【題目】過拋物線的對(duì)稱軸上一點(diǎn)的直線與拋物線相交于M、N兩點(diǎn),自M、N向直線作垂線,垂足分別為、.
(Ⅰ)當(dāng)時(shí),求證:⊥;
(Ⅱ)記、、的面積分別為、、,是否存在,使得對(duì)任意的,都有成立.若存在,求值;若不在,說明理由.
【答案】(Ⅰ)略
(Ⅱ)存在,使得對(duì)任意的,都有成立,證明略
【解析】
解:
依題意,可設(shè)直線MN的方程為,則有
由消去x可得
從而有①
于是②
又由,可得③
(Ⅰ)如圖1,當(dāng)時(shí),點(diǎn)即為拋物線的焦點(diǎn),為其準(zhǔn)線
此時(shí)①可得
證法1:
證法2:
(Ⅱ)存在,使得對(duì)任意的,都有成立,證明如下:
證法1:記直線與x軸的交點(diǎn)為,則.于是有
將①、②、③代入上式化簡(jiǎn)可得
上式恒成立,即對(duì)任意成立
證法2:如圖2,連接,則由可得
,
所以直線經(jīng)過原點(diǎn)O,同理可證直線也經(jīng)過原點(diǎn)O
又設(shè)
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】揚(yáng)州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長(zhǎng)為(米),外周長(zhǎng)(梯形的上底線段與兩腰長(zhǎng)的和)為(米).
⑴求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長(zhǎng)不超過米,則其腰長(zhǎng)應(yīng)在什么范圍內(nèi)?
⑶當(dāng)防洪堤的腰長(zhǎng)為多少米時(shí),堤的上面與兩側(cè)面的水泥用料最。磾嗝娴耐庵荛L(zhǎng)最。?求此時(shí)外周長(zhǎng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個(gè)命題:其中所有正確命題的序號(hào)是_________.
①函數(shù)的最小正周期為;
②在中,若,則一定是鈍角三角形;
③函數(shù)且的圖象必經(jīng)過點(diǎn)(3,2);
④若命題“”是假命題,則實(shí)數(shù)的取值范圍為;
⑤的圖象向左平移個(gè)單位,所得圖象關(guān)于軸對(duì)稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一環(huán)保型企業(yè),為了節(jié)約成本擬進(jìn)行生產(chǎn)改造,現(xiàn)將某種產(chǎn)品產(chǎn)量與單位成本統(tǒng)計(jì)數(shù)據(jù)如下:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
單位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)試確定回歸方程;
(Ⅱ)指出產(chǎn)量每增加1000件時(shí),單位成本平均下降多少?
(Ⅲ)假定單位成本為70元/件時(shí),產(chǎn)量應(yīng)為多少件?
(參考公式:.)
(參考數(shù)據(jù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全世界越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測(cè)站點(diǎn)于2016年8月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計(jì)如下:
空氣質(zhì)量指數(shù)() | 0-50 | 51-100 | 101-150 | 151-200 | 201-250 |
空氣質(zhì)量等級(jí) | 空氣優(yōu) | 空氣良 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 20 | 40 | 10 | 5 |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖;
(2)在空氣質(zhì)量指數(shù)分別為51-100和151-200的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取5天,從中任意選取2天,求事件“兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左右焦點(diǎn)分別為,線段,的中點(diǎn)分別為,且是面積為4的直角三角形,過作直線交橢圓于兩點(diǎn),使,則直線的斜率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知六面體如圖所示,平面,,,,,,,,分別是棱,上的點(diǎn),且滿足.
(1)求證:平面平面;
(2)若平面與平面所成的二面角的大小為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓O:x2+y2=9上的動(dòng)點(diǎn)P在x軸、y軸上的射影分別是P1,P2,點(diǎn)M滿足.
(1)求點(diǎn)M的軌跡C的方程;
(2)點(diǎn)A(0,1),B(0,﹣3),過點(diǎn)B的直線與軌跡C交于點(diǎn)S,N,且直線AS、AN的斜率kAS,kAN存在,求證:kASkAN為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x+y-6=0,過直線上一點(diǎn)P作圓x2+y2=4的切線,切點(diǎn)分別為A,B,則四邊形PAOB面積的最小值為______,此時(shí)四邊形PAOB外接圓的方程為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com