已知sinx+cosx=,0≤x<π,則tanx的值為(    )

A.           B.            C.           D.

解析:由sinx+cosx=,兩邊平方得

sin2x=-.①

由0≤x<π知0≤2x<2π.

由①知π<2x<2π<x<π.

又由已知sinx+cosx=>0知只能<x<

π<2x<.②

由①②得cos2x=.

∴tanx=.

答案:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
OM
=(cosα,sinα),
ON
=(cosx,sinx),
PQ
=(cosx,-sinx+
4
5cosα
)

(1)當cosα=
4
5sinx
時,求函數(shù)y=
ON
PQ
的最小正周期;
(2)當
OM
ON
=
12
13
,
OM
PQ
,α-x,α+x都是銳角時,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=sinα+cosα,cosx=sinαcosα,則cos2x=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinx+cosx=
1
5
,x∈(0,x)
,求tanx的值.
(2)已知0<α<
π
2
<β<π
cosα=
3
5
,sin(α+β)=
5
13
,求sinα和cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinx+cosx=-
1
5
(0<x<π),求tanx的值;
(2)已知角α終邊上一點P(-4,3),求
cos(
π
2
+α)tan(π+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=2cosx,則
3sin(
2
+x)-cos(
π
2
+x)
5cos(π+x)-sin(-x)
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案