某商場從生產(chǎn)廠家以每件20元購進一批商品,若該商品零售價定為元,則銷售量(單位:件)與零售價(單位:元)有如下關(guān)系:,問該商品零售價定為多少元時毛利潤最大,并求出最大毛利潤.(毛利潤銷售收入進貨支出)
零售價定為每件元時,有最大毛利潤為元.

試題分析:根據(jù)題意可知,毛利潤銷售收入進貨支出,則毛利潤與零售價的函數(shù)關(guān)系為,再利用導數(shù)求出函數(shù)的最大值.
試題解析:由題意知



,得(舍).
此時
因為在附近的左側(cè),右側(cè),
是極大值.
根據(jù)實際意義知,是最大值,即零售價定為每件元時,有最大毛利潤為元.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)曲線y=f(x)在x=0處的切線恰與直線垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導函數(shù)的圖象如圖,f(x)=6lnx+h(x)

(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)當a=1時,求函數(shù)f(x)的最小值;
(II)當a≤0時,討論函數(shù)f(x)的單調(diào)性;
(III)是否存在實數(shù)a,對任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設(shè),求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)R,,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù),若的最小值與無關(guān),求的取值范圍;
(3)若,直接寫出(不需給出演算步驟)關(guān)于的方程的解集

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),若在點處的切線斜率為
(Ⅰ)用表示;
(Ⅱ)設(shè),若對定義域內(nèi)的恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)函數(shù)y=f(x)在(-,)內(nèi)有定義,對于給定的正數(shù)k,定義函數(shù):
,取函數(shù),若對任意的x∈(-,),恒有fk(x)=f(x),則(   )
A.k的最大值為2B.k的最小值為2
C.k的最大值為1D.k的最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在點(1,2)處的切線與的圖像有三個公共點,則的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案