19.甲、乙、丙三人相互傳球,第一次由甲將球傳出,每次傳球時(shí),傳球者將球等可能地傳給另外兩人中的任何一人.經(jīng)過(guò)3次傳球后,球仍在甲手中的概率是$\frac{1}{4}$.

分析 利用列舉法求出所有的傳球方法共有多少種,找出第3次球恰好傳回給甲的情況,由此能求出經(jīng)過(guò)3次傳球后,球仍在甲手中的概率.

解答 解:用甲→乙→丙→甲表示一種傳球方法
所有傳球方法共有:
甲→乙→甲→乙;甲→乙→甲→丙;甲→乙→丙→甲;甲→乙→丙→乙;
甲→丙→甲→乙;甲→丙→甲→丙;甲→丙→乙→甲;甲→丙→乙→丙;
則共有8種傳球方法.
第3次球恰好傳回給甲的有兩種情況,
∴經(jīng)過(guò)3次傳球后,球仍在甲手中的概率是p=$\frac{2}{8}=\frac{1}{4}$.   
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.F為拋物線y2=12x的焦點(diǎn),過(guò)F的直線l與拋物線在第一象限的交點(diǎn)為A,過(guò)A作AH垂直拋物線的準(zhǔn)線于H,若直線l的傾角α∈(0,$\frac{π}{3}$],則△AFH面積的最小值為36$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.樣本數(shù)據(jù):-2,-1,0,1,2的方差為( 。
A.$\sqrt{2}$B.2C.1D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線y=-2x上,則cos2θ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知正方體的棱長(zhǎng)為1,則正方體的外接球的體積為$\frac{{\sqrt{3}}}{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線x2=2py,準(zhǔn)線方程為y+1=0,直線l過(guò)定點(diǎn)T(0,t)(t>0)且與拋物線交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的方程;
(2)$\overrightarrow{OA}•\overrightarrow{OB}$是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由;
(3)當(dāng)t=1時(shí),設(shè)$\overrightarrow{AT}=λ•\overrightarrow{TB}$,記|AB|=f(λ),求f(λ)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若以點(diǎn)F為圓心,半徑為a的圓與雙曲線C的漸近線相切,則雙曲線C的離心率等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]?D(m<n),使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).
①f(x)=3-$\frac{4}{x}$不可能是k型函數(shù);
②若函數(shù)y=-$\frac{1}{2}$x2+x是3型函數(shù),則m=-4,n=0;
③設(shè)函數(shù)f(x)=|3x-1|是2型函數(shù),則m+n=1;
④若函數(shù)y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函數(shù),則n-m的最大值為$\frac{2\sqrt{3}}{3}$
正確的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,在區(qū)間(0,1]上是增函數(shù)且最大值為-1的為( 。
A.y=-x2B.$y={(\frac{1}{2})^x}$C.$y=-\frac{1}{x}$D.y=2x

查看答案和解析>>

同步練習(xí)冊(cè)答案