18.若正方體的體對角線長是4,則正方體的體積是$\frac{64\sqrt{3}}{9}$.

分析 根據(jù)體對角線與邊長的關(guān)系求出正方體邊長,代入體積公式計算.

解答 解:設(shè)正方體邊長為a,則$\sqrt{{a}^{2}+{a}^{2}+{a}^{2}}$=4,
解得a=$\frac{4\sqrt{3}}{3}$,
∴V=a3=$\frac{64\sqrt{3}}{9}$.

點評 本題考查了正方體得體積計算,找到邊長與對角線的關(guān)系是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)θ∈(0,$\frac{π}{4}$),則二次曲線$\frac{{x}^{2}}{tanθ}$-tanθ•y2=1的離心率的取值范圍為( 。
A.(1,$\sqrt{2}$]B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.四面體ABCD中,AD⊥平面ABC,AB⊥BC,E,F(xiàn)分別為AC,BD的中點,AB=AD=2,∠BAC=60°.
(1)求證:CD⊥AF;
(2)求EF與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\underset{lim}{x→∞}$($\frac{2{x}^{2}+1}{x+1}$-ax+b)=2,則b的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個函數(shù)中,在(-∞,0)上是增函數(shù)的為( 。
A.f(x)=x2+4B.f(x)=3-$\frac{2}{x}$C.f(x)=x2-5x-6D.f(x)=1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={1,2},B={x|x2+ax+b=0},C={x|cx+1=0},若A=B,則a+b=-1,若C⊆A,則常數(shù)c組成的集合為{-1,$\frac{1}{2}$,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.把直徑分別為6cm,8cm,10cm的三個銅球熔制成一個較大的銅球,再把球削成一個棱長.最大的正方體,求此正方體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.方程2x2+2x-1=0的兩根為x1和x2,則|x1-x2|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線l與兩條直線x-y-7=0,y=1分別交于P、Q兩點,線段PQ的中點為(1,-1),則直線l的斜率為-$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案