設(shè)函數(shù)
(1)若k=0,求f(x)的最小值;
(2)若當(dāng)x≥0時(shí)f(x)≥1,求實(shí)數(shù)k的取值范圍.
【答案】分析:(1)將k的值代入f(x),求出f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出函數(shù)的單調(diào)遞增區(qū)間,令導(dǎo)函數(shù)小于0求出函數(shù)的單調(diào)遞減區(qū)間,求出函數(shù)的最小值.
(2)求出f(x)的導(dǎo)函數(shù),再求出導(dǎo)函數(shù)的導(dǎo)數(shù),通過對k的討論,判斷出二階導(dǎo)數(shù)的符號,判斷出f(x)的導(dǎo)函數(shù)的最值,從而判斷出導(dǎo)函數(shù)的符號,得到f(x)的單調(diào)性,求出f(x)的最小值,令最小值大于1,列出不等式求出k的范圍.
解答:解:(1)k=0時(shí),f(x)=ex-x,
f'(x)=ex-1.
當(dāng)x∈(-∞,0)時(shí),f'(x)<0;當(dāng)x∈(0,+∞)時(shí),f'(x)>0.
所以f(x)在(-∞,0)上單調(diào)減小,在(0,+∞)上單調(diào)增加
故f(x)的最小值為f(0)=1
(2)f'(x)=ex-kx-1,
f''(x)=ex-k
當(dāng)k≤1時(shí),f''(x)≥0(x≥0),
所以f'(x)在[0,+∞)上遞增,
而f'(0)=0,
所以f'(x)≥0(x≥0),
所以f(x)在[0,+∞)上遞增,
而f(0)=1,
于是當(dāng)x≥0時(shí),f(x)≥1.
當(dāng)k>1時(shí),
由f''(x)=0得x=lnk
當(dāng)x∈(0,lnk)時(shí),f''(x)<0,所以f'(x)在(0,lnk)上遞減,
而f'(0)=0,于是當(dāng)x∈(0,lnk)時(shí),f'(x)<0,所以f(x)在(0,lnk)上遞減,
而f(0)=1,所以當(dāng)x∈(0,lnk)時(shí),f(x)<1.
綜上得k的取值范圍為(-∞,1].
點(diǎn)評:本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,解題的關(guān)鍵是利用導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,判斷出函數(shù)的最值,本題第二小題是一個(gè)恒成立的問題,恒成立的問題一般轉(zhuǎn)化最值問題來求解,本題即轉(zhuǎn)化為用單調(diào)性求函數(shù)在閉區(qū)間上的最值的問題,求出最值再判斷出參數(shù)的取值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù),

(1)若,解不等式;w.w.w.k.s.5.u.c.o.m          

(2)如果對任意,不等式恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市南開中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

己知實(shí)數(shù)m≠0,又,設(shè)函數(shù)
(1)若m>0,且f(-2)=f(2),求m的值;
(2)若對一切正整數(shù)k,有f(2k)>f(2k-1),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(1)若k=0,求f(x)的最小值;
(2)若當(dāng)x≥0時(shí)f(x)≥1,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省西安市西工大附中高考數(shù)學(xué)五模試卷(解析版) 題型:解答題

設(shè)函數(shù)
(1)若k=0,求f(x)的最小值;
(2)若當(dāng)x≥0時(shí)f(x)≥1,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案