已知曲線是動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、距離之比為的點(diǎn)的軌跡。
(1)求曲線的方程;(2)求過(guò)點(diǎn)與曲線相切的直線方程。
(1);(2),。
【解析】
試題分析:(1)在給定的坐標(biāo)系里,設(shè)點(diǎn)。
由及兩點(diǎn)間的距離公式,得 , ①…………3分
將①式兩邊平方整理得:
即所求曲線方程為: ②…………………………5分
(2)由(1)得,其圓心為,半徑為。
i)當(dāng)過(guò)點(diǎn)的直線的斜率不存在時(shí),直線方程為,顯然與圓相切;…6分
ii) 當(dāng)過(guò)點(diǎn)的直線的斜率存在時(shí),設(shè)其方程為
即 ……………7分
由其與圓相切得圓心到該直線的距離等于半徑,得
,解得, …………8分
此時(shí)直線方程為 …………9分
所以過(guò)點(diǎn)與曲線相切的直線方程為,。………10分
考點(diǎn):兩點(diǎn)間的距離公式;點(diǎn)到直線的距離公式;軌跡方程的求法;
點(diǎn)評(píng):求軌跡方程的基本步驟:①建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,設(shè)P(x,y)是軌跡上的任意一點(diǎn);②尋找動(dòng)點(diǎn)P(x,y)所滿(mǎn)足的條件;③用坐標(biāo)(x,y)表示條件,列出方程f(x,y)=0;④化簡(jiǎn)方程f(x,y)=0為最簡(jiǎn)形式;⑤證明所得方程即為所求的軌跡方程,注意驗(yàn)證。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)項(xiàng)點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1
(1)求橢圓的方程‘
(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),
(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量,動(dòng)點(diǎn)到定直線的距離等于,并且滿(mǎn)足,其中為坐標(biāo)原點(diǎn),為非負(fù)實(shí)數(shù).
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若將曲線向左平移一個(gè)單位,得曲線,試判斷曲線為何種類(lèi)型;
(3)若(2)中曲線為圓錐曲線,其離心率滿(mǎn)足,當(dāng)是曲線的兩個(gè)焦點(diǎn)時(shí),則圓錐曲線上恒存在點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(12分)已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)項(xiàng)點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(I)求橢圓的方程;
(II)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年山西省孝義市高二第二次月考考試數(shù)學(xué)文卷 題型:解答題
( 14分)
已知橢圓C的中心為直角坐標(biāo)系x0y的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)項(xiàng)點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1
(1)求橢圓C的方程
(2)若為橢圓C的動(dòng)點(diǎn),M為過(guò)P且垂直于軸的直線上的點(diǎn),
(e為橢圓C的離心率),求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com