【題目】如圖,在三棱錐中,,側(cè)面底面,,為線段上一點,且滿足.
(1)若為的中點,求證:;
(2)當(dāng)最小時,求二面角的余弦值.
【答案】(1)見證明;(2)
【解析】
(1)根據(jù)中點可得 ,再根據(jù)面面垂直的性質(zhì)定理得面,即可證明結(jié)論(2) 以為坐標(biāo)原點,分別以射線和垂直于面向上的方向為軸,建立空間直角坐標(biāo)系,求出兩個半平面的法向量,利用公式求其夾角余弦即可.
(1)在,因為,,
為的中點,所以,
因為面面,面面,所以面,
又面,
(2)以為坐標(biāo)原點,分別以射線和垂直于面向上的方向為軸,建立空間直角坐標(biāo)系,
設(shè),則有,因為側(cè)面底面,,
所以,
所以,
當(dāng)時,最小,
此時,,
設(shè)為平面的一個法向量,則有,
所以,令,則,
而平面的一個法向量為,
所以,
故二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司需要對所生產(chǎn)的三種產(chǎn)品進行檢測,三種產(chǎn)品數(shù)量(單位:件)如下表所示:
產(chǎn)品 | A | B | C |
數(shù)量(件) | 180 | 270 | 90 |
采用分層抽樣的方法從以上產(chǎn)品中共抽取6件.
(1)求分別抽取三種產(chǎn)品的件數(shù);
(2)將抽取的6件產(chǎn)品按種類編號,分別記為,現(xiàn)從這6件產(chǎn)品中隨機抽取2件.
(。┯盟o編號列出所有可能的結(jié)果;
(ⅱ)求這兩件產(chǎn)品來自不同種類的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的共有( )
① 因為直線是無限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
② 兩個平面有時只相交于一個公共點;
③ 分別在兩個相交平面內(nèi)的兩條直線如果相交,則交點只可能在兩個平面的交線上;
④ 一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi);
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進行某項研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某口袋內(nèi)裝有一些除顏色不同之外其他均相同的紅球、白球和黑球,從中摸出1個球,摸出紅球的概率是0.42,摸出白球的概率是0.28,若紅球有21個,則黑球有_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,點E是棱PB的中點.
(1)求異面直線EC與PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、,
(1)若兩點到直線的距離都為,求直線的方程;
(2)若兩點到直線的距離都為,試根據(jù)的取值討論直線存在的條數(shù),不需寫出直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com