【題目】下列命題中,正確的共有( )
① 因為直線是無限的,所以平面內的一條直線就可以延伸到平面外去;
② 兩個平面有時只相交于一個公共點;
③ 分別在兩個相交平面內的兩條直線如果相交,則交點只可能在兩個平面的交線上;
④ 一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內;
A.0個B.1個C.2個D.3個
科目:高中數(shù)學 來源: 題型:
【題目】如圖,下面的表格內的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個首項為1,公比為的數(shù)列依次填入第一列的空格內;其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫
第1列 | 第2列 | 第3列 | … | 第列 | |
第1行 | 1 | 1 | 1 | … | 1 |
第2行 | |||||
第3行 | |||||
… | … | ||||
第行 |
(1)設第2行的數(shù)依次為,試用表示的值;
(2)設第3列的數(shù)依次為,求證:對于任意非零實數(shù),;
(3)能否找到的值,使得(2)中的數(shù)列的前項成為等比數(shù)列?若能找到,的值有多少個?若不能找到,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過橢圓的右焦點,交橢圓于點,,點為橢圓的左焦點,的周長為..
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與直線的傾斜角互補,且交橢圓于點、,,求證:直線與直線的交點在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,且,,,點G,H分別為邊,的中點,點M是線段上的動點.
(1)求證:;
(2)若,當三棱錐的體積最大時,求點C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形(,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算,面積的最大值,并比較哪個方案好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若曲線在點處的切線方程是,不等式的解集為非空集合,其中為自然對數(shù)的底數(shù).
(Ⅰ)求的解析式,并用表示;
(Ⅱ)若任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,為的中點,在側面上,有下列四個命題:
①若,則面積的最小值為;
②平面內存在與平行的直線;
③過作平面,使得棱,,在平面的正投影的長度相等,則這樣的平面有4個;
④過作面與面平行,則正方體在面的正投影面積為.
則上述四個命題中,真命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以直角坐標系的原點為極點,軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)設曲線的極坐標方程為,曲線的極坐標方程為,求三條曲線,,所圍成圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com