分析 (1)根據(jù)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,轉(zhuǎn)化為$\overrightarrow{AB}$•$\overrightarrow{a}$=0,解方程即可.
(2)根據(jù)向量$\overrightarrow{AC}$與向量$\overrightarrow{a}$共線,建立方程關系,轉(zhuǎn)化為一元二次函數(shù)進行求解.
解答 解:(Ⅰ)$\overrightarrow{AB}=(-16,t),\overrightarrow a=(1,2)$
∵$\overrightarrow{AB}$⊥$\overrightarrow{a}$,
∴$\overrightarrow{AB}$•$\overrightarrow{a}$=0,即-16+2t=0,得t=8
故$\overrightarrow{OB}=(-8,8)$…(6分)
(Ⅱ)∵向量$\overrightarrow{AC}$與向量$\overrightarrow{a}$共線,$\overrightarrow{AC}=(8sinθ-8,t)$,$\overrightarrow a=(1,2)$
∴$\frac{8sinθ-8}{1}=\frac{t}{2}$,得t=16sinθ-16…(8分),
$tsinθ=16{sin^2}θ-16sinθ=16{(sinθ-\frac{1}{2})^2}-4$
故當sinθ=$\frac{1}{2}$時,tsinθ取最小值4,…(10分)
此時$\overrightarrow{OC}=(4,-8)$,
則$\overrightarrow{OA}•\overrightarrow{OC}=(8,0)•(4,-8)=32$.
點評 本題主要考查向量數(shù)量積的應用,根據(jù)向量垂直和向量關系的坐標公式是解決本題的關鍵.考查學生的運算能力.
科目:高中數(shù)學 來源: 題型:選擇題
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. | 可以預測,當x=9時,y=4 | B. | 該回歸直線必過點(9,4) | ||
C. | m=4 | D. | m=5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com