已知數(shù)列,,,……,,……

(1)計算,,

(2)根據(jù)(1)中的計算結果,猜想的表達式并用數(shù)學歸納法證明你的猜想。

 

【答案】

(1)         

(2)根據(jù)(1)的計算結果猜想            (7分)

【解析】本題考查根據(jù)遞推關系求數(shù)列的通項公式的方法,證明n=k+1時,是解題的難點。

(1)S1=a1,由S2=a1+a2求得S2,同理求得 S3,S4

(2)由(1)猜想猜想,n∈N+,用數(shù)學歸納法證明,檢驗n=1時,猜想成立;假設,則當n=k+1時,由條件可得當n=k+1時,也成立,從而猜想仍然成立

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an是首項為1的等比數(shù)列,Sn是an的前n項和,且S6=9S3,則數(shù)列an的通項公式是( 。
A、2n-1B、21-nC、31-nD、3n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an的前n項和為Sn,a1=2,nan+1=Sn+n(n+1),
(1)求數(shù)列an的通項公式;
(2)設bn=
Sn2n
,如果對一切正整數(shù)n都有bn≤t,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an滿足a1=1,an+1=an+n(n∈N*),數(shù)列bn滿足b1=1,(n+2)bn+1=nbn(n∈N*),數(shù)列cn滿足c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1
(n∈N*
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列cn的通項公式;
(3)是否存在正整數(shù)k使得k(an+
7
2
)-
3
bn+1
cn+6n+15
對一切n∈N*恒成立,若存在求k的最小值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,Tn=
S1+S2+…+Sn
n
,稱Tn為數(shù)列a1,a2,…an的“理想數(shù)”,已知數(shù)列a1,a2,…a500的“理想數(shù)”為2004,那么數(shù)列2,a1,a2,…a500的“理想數(shù)”為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列
2
、
6
10
、
14
、3
2
…那么7
2
是這個數(shù)列的第幾項(  )
A、23B、24C、19D、25

查看答案和解析>>

同步練習冊答案