在育民中學舉行的電腦知識競賽中,將九年級兩個班參賽的學生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學生人數(shù)是多少;
(3)這兩個班參賽學生的成績的中位數(shù)應落在第幾小組內(nèi).

(1)第二小組的頻率為,補全的頻率分布直方圖詳見解析;(2)100人;(3)九年級兩個班參賽學生的成績的中位數(shù)應落在第二小組內(nèi).

解析試題分析:(1)先從所給的直方圖中得出第一、三、四、五小組的頻率,然后用1減去第一、三、四、五小組的頻率和得到第二小組的頻率,接著由確定第二小組的小長方形的高,從而可補全頻率分布直方圖;(2)用第二小組的頻數(shù)除以該組的頻率,即可計算出九年兩個班參賽學生的總人數(shù);(3)要確定中位數(shù)所在的小組,只需先確定各小組的頻數(shù),從第一小組開始累加,當和達到總人數(shù)的一半時的組就是中位數(shù)所在的小組.
試題解析:(1)∵各小組的頻率之和為1.00,第一、三、四、五小組的頻率分別是0.30,0.15,0.10,0.05
∴第二小組的頻率為:
∴落在59.5~69.5的第二小組的小長方形的高,則補全的頻率分布直方圖如圖所示

(2)設九年級兩個班參賽的學生人數(shù)為
∵第二小組的頻數(shù)為40人,頻率為0.40
,解得
所以這兩個班參賽的學生人數(shù)為100人
(3)因為0.3×100=30,0.4×100=40,0.15×100=15,0.10×100=10,0.05×100=5
即第一、第二、第三、第四、第五小組的頻數(shù)分別為30,40,15,10,5
所以九年級兩個班參賽學生的成績的中位數(shù)應落在第二小組內(nèi)
考點:1.頻率分布直方圖;2.轉化與運算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

關于某設備的使用年限和所支出的維修費用(萬元),有如下的統(tǒng)計資料:

x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0
(1)如由資料可知呈線形相關關系.試求:線形回歸方程;(,
(2)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某批次的某種燈泡共個,對其壽命進行追蹤調(diào)查,將結果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)
頻數(shù)
頻率















合計


(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出、、的值;
(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;
(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下面給出某村委調(diào)查本村各戶收入情況所作的抽樣,閱讀并回答問題:
①本村人口:1200人;戶數(shù)300戶,每戶平均人口數(shù)4人
②應抽戶數(shù):30
③抽樣間隔:=40
④確定隨機數(shù)字:取一張人民幣,后兩位數(shù)為12
⑤確定第一樣本戶:編號為12的戶為第一樣本戶
⑥確定第二樣本戶:12+40=52,52號為第二樣本戶
⑦……
(1) 該村委采用了何種抽樣方法?
(2) 抽樣過程存在哪些問題,試改之;
(3) 何處用的是簡單隨機抽樣?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩位學生參加數(shù)學競賽培訓,在培訓期間,他們參加的次預賽成績記錄如下: 
甲                    乙               
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)①求甲、乙兩人的成績的平均數(shù)與方差,②若現(xiàn)要從中選派一人參加數(shù)學競賽,
根據(jù)你的計算結果,你認為選派哪位學生參加合適?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為緩解某路段交通壓力,計劃將該路段實施“交通限行”.在該路段隨機抽查了50人,了解公眾對“該路段限行”的態(tài)度,將調(diào)查情況進行整理,制成下表:

年齡
(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻 數(shù)
5
10
15
10
5
5
贊成
人數(shù)
4
8
9
6
4
3
(1)作出被調(diào)查人員年齡的頻率分布直方圖.
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中不贊成“交通限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為調(diào)查甲、乙兩校高三年級學生某次聯(lián)考數(shù)學成績情況,用簡單隨機抽樣,從這兩校中各抽取30名高三年級學生,以他們的數(shù)學成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.

(1)若甲校高三年級每位學生被抽取的概率為0.05,求甲校高三年級學生總人數(shù),并估計甲校高三年級這次聯(lián)考數(shù)學成績的及格率(60分及60分以上為及格);
(2)設甲、乙兩校高三年級學生這次聯(lián)考數(shù)學平均成績分別為1,2,估計12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩所學校高三年級分別有1 200人,1 000人,為了了解兩所學校全體高三年級學生在該地區(qū)六校聯(lián)考的數(shù)學成績情況,采用分層抽樣方法從兩所學校一共抽取了110名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:

分組
[70,80)
[80,90)
[90,100)
[100,110)
頻數(shù)
3
4
8
15
 
 
 
 
 
分組
[110,120)
[120,130)
[130,140)
[140,150]
頻數(shù)
15
x
3
2
乙校:
分組
[70,80)
[80,90)
[90,100)
[100,110)
頻數(shù)
1
2
8
9
 
 
 
 
 
分組
[110,120)
[120,130)
[130,140)
[140,150]
頻數(shù)
10
10
y
3
(1)計算xy的值;
(2)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,請分別估計兩所學校數(shù)學成績的優(yōu)秀率;
(3)由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.10的前提下認為兩所學校的數(shù)學成績有差異.
 
甲校
乙校
總計
優(yōu)秀
 
 
 
非優(yōu)秀
 
 
 
總計
 
 
 
參考數(shù)據(jù)與公式:由列聯(lián)表中數(shù)據(jù)計算K2. ?
臨界值表
P(K2k0)
0.10
0.05
0.010
k0
2.706
3.841
6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

根據(jù)我國發(fā)布的《環(huán)境空氣質量指數(shù)技術規(guī)定》(試行),共分為六級:為優(yōu),為良,為輕度污染,為中度污染,均為重度污染,及以上為嚴重污染.某市2013年11月份天的的頻率分布直方圖如圖所示:

⑴該市11月份環(huán)境空氣質量優(yōu)或良的共有多少天?
⑵若采用分層抽樣方法從天中抽取天進行市民戶外晨練人數(shù)調(diào)查,則中度污染被抽到的天數(shù)共有多少天?
⑶空氣質量指數(shù)低于時市民適宜戶外晨練,若市民王先生決定某天早晨進行戶外晨練,則他當天適宜戶外晨練的概率是多少?

查看答案和解析>>

同步練習冊答案