分析:(Ⅰ)通過求解函數(shù)的導(dǎo)函數(shù),通過:當(dāng)0<a<1,a=1,a>1,分別通過函數(shù)的導(dǎo)數(shù)列表,然后求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)a=1時,求出f(x),令h(x)=lnx-2x+
+
,(x>1),將問題轉(zhuǎn)化為求函數(shù)的最值問題,從而解決問題.
解答:
解:(Ⅰ)f′(x)=ax-(a+1)+
=
,
①當(dāng)0<a<1時,
當(dāng)x∈(0,1)時,f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(1,
)時,f′(x)<0,函數(shù)是減函數(shù);
當(dāng)x∈(
,+∞)時,f′(x)>0,函數(shù)是增函數(shù).
②當(dāng)a=1時,
f′(x)=
≥0,對一切x∈(0,+∞)恒成立,
當(dāng)且僅當(dāng)x=1時f′(x)=0,
函數(shù)是單調(diào)增函數(shù),單調(diào)增區(qū)間(0,+∞);
③當(dāng)a>1時,
當(dāng)x∈(0,
)時,f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,1)時,f′(x)<0,函數(shù)是減函數(shù);
當(dāng)x∈(1,+∞)時,f′(x)>0,函數(shù)是增函數(shù).
綜上:當(dāng)0<a<1時,函數(shù)f(x)的單調(diào)增區(qū)間(0,1)和(
,+∞),單調(diào)減區(qū)間是(1,
);
當(dāng)a=1時,函數(shù)的單調(diào)增區(qū)間(0,+∞);
當(dāng)a>1時,函數(shù)f(x)的單調(diào)增區(qū)間(0,
)和(1,+∞),單調(diào)減區(qū)間是(
,1).
(Ⅱ)當(dāng)a=1時,f(x)=lnx+
x
2-2x,
∴證明:當(dāng)x>1時,要證f(x)<
x
2-
-
,
即證明:lnx-2x+
+
<0,(x>1),
令h(x)=lnx-2x+
+
,(x>1)
∴h′(x)=
-2+
+
,
∴h″(x)=-
-
-
x-<0,
∴h′(x)在(1,+∞)遞減,
∴h′(x)<h′(1)=0,
∴h(x)在(1,+∞)遞減,
∴h(x)<h(1)=0,
∴當(dāng)x>1時,f(x)<
x
2-
-
.