已知函數(shù)f(x)=
,其導(dǎo)函數(shù)記為f′(x),則f(2 012)+f′(2 012)+f(-2012)-f′(-2012)=________.
由已知得f(x)=1+
,
則f′(x)=
.
令g(x)=f(x)-1=
,顯然g(x)為奇函數(shù),f′(x)為偶函數(shù),所以f′(2012)-f′(-2012)=0,f(2012)+f(-2012)=g(2012)+1+g(-2012)+1=2,所以f(2012)+f′(2012)+f(-2012)-f′(-2012)=2.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若函數(shù)
在
上為增函數(shù)(
為常數(shù)),則稱
為區(qū)間
上的“一階比增函數(shù)”,
為
的一階比增區(qū)間.
(1) 若
是
上的“一階比增函數(shù)”,求實數(shù)
的取值范圍;
(2) 若
(
,
為常數(shù)),且
有唯一的零點,求
的“一階比增區(qū)間”;
(3)若
是
上的“一階比增函數(shù)”,求證:
,
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
在
處存在極值.
(1)求實數(shù)
的值;
(2)函數(shù)
的圖像上存在兩點A,B使得
是以坐標(biāo)原點O為直角頂點的直角三角形,且斜邊AB的中點在
軸上,求實數(shù)
的取值范圍;
(3)當(dāng)
時,討論關(guān)于
的方程
的實根個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
為
的導(dǎo)函數(shù),則
的圖像是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列曲線的所有切線構(gòu)成的集合中,存在無數(shù)對互相垂直的切線的曲線是( )
A.f(x)=ex | B.f(x)=x3 |
C.f(x)=lnx | D.f(x)=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若
在區(qū)間
上有極值點,則實數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若點P是曲線y=x2-ln x上任意一點,則點P到直線y=x-2的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=
x
3+ax
2+bx(a,b∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=
,且函數(shù)f(x)在
上不存在極值點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)f(x)=x2-2x-4ln x,則f′(x)>0的解集為________.
查看答案和解析>>