若函數(shù)上為增函數(shù)(為常數(shù)),則稱為區(qū)間上的“一階比增函數(shù)”,的一階比增區(qū)間.
(1) 若上的“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(2) 若  (,為常數(shù)),且有唯一的零點(diǎn),求的“一階比增區(qū)間”;
(3)若上的“一階比增函數(shù)”,求證:,
(1)  (2)

試題分析:
(1)根據(jù)新定義可得在區(qū)間上單調(diào)遞增,即導(dǎo)函數(shù)在區(qū)間上恒成立,則有,再利用分離參數(shù)法即可求的a的取值范圍.
(2)對(duì)求導(dǎo)數(shù),求單調(diào)區(qū)間,可以得到函數(shù)有最小值,又根據(jù)函數(shù) 只有一個(gè)零點(diǎn),從而得到,解出的值為1,再根據(jù)的“一階比增區(qū)間”的定義,則的單調(diào)增區(qū)間即為的“一階比增區(qū)間”.
(3)根據(jù)上的“一階比增函數(shù)”的定義,可得到函數(shù)在區(qū)間上單調(diào)遞增,則由函數(shù)單調(diào)遞增的定義可得到,同理有,兩不等式化解相加整理即可得到.
試題解析:
(1)由題得, 在區(qū)間上為增函數(shù),則在區(qū)間上恒成立,即,綜上a的取值范圍為.
(2)由題得,(),則,當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035522309444.png" style="vertical-align:middle;" />,所以, .因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035523027582.png" style="vertical-align:middle;" />,所以函數(shù) 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,即 .又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035522341675.png" style="vertical-align:middle;" />有唯一的零點(diǎn),所以(使解得帶入驗(yàn)證),故 的單調(diào)增區(qū)間為.即的“一階比增區(qū)間”為.
(3)由題得,因?yàn)楹瘮?shù) 為上的“一階比增函數(shù)”,所以在區(qū)間上的增函數(shù),又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035523261585.png" style="vertical-align:middle;" />,所以
……1,同理, ……2,則1+2得
,所以,.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求證:時(shí),恒成立;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 (其中是自然對(duì)數(shù)的底)
(1) 若處取得極值,求的值;
(2) 若存在極值,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上的不同兩點(diǎn).如果在曲線上存在點(diǎn),使得:①;②曲線在點(diǎn)處的切線平行于直線,則稱函數(shù)存在“中值相依切線”,試問(wèn):函數(shù)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ln ax (a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
(2)求證:對(duì)于任意正整數(shù)n,均有1+(e為自然對(duì)數(shù)的底數(shù));
(3)當(dāng)a=1時(shí),是否存在過(guò)點(diǎn)(1,-1)的直線與函數(shù)yf(x)的圖象相切?若存在,有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=,其導(dǎo)函數(shù)記為f′(x),則f(2 012)+f′(2 012)+f(-2012)-f′(-2012)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R都有f′(x)>f(x)成立,則(  )
A.3f(ln 2)>2f(ln 3)B.3f(ln 2)=2f(ln 3)
C.3f(ln 2)<2f(ln 3)D.3f(ln 2)與2f(ln 3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)函數(shù),則的最小值為(      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=xln x,g(x)=x3ax2x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)對(duì)一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案