如圖(1),在三角形ABC中,AB⊥AC,若AD⊥BC,則AB2=BD.BC;若類(lèi)比該命題,如圖(2),三棱錐A-BCD中,AD⊥面ABC,若A點(diǎn)在三角形BCD所在平面內(nèi)的射影為M,則有什么結(jié)論?命題是否是真命題.
【答案】分析:利用類(lèi)比推理,將平面中的線與空間中的面類(lèi)比,得到類(lèi)比結(jié)論.
通過(guò)連接DM,據(jù)BC⊥AM,BC⊥AD得到BC⊥ADE得到BC⊥ED得到滿足平面條件的三角形AED,利用平面三角形的性質(zhì)得證.
解答:解:命題是:三棱錐A-BCD中,AD⊥面ABC,若A點(diǎn)在三角形BCD所在平面內(nèi)的射影為M,
則有S△ABC2=S△BCM•S△BCD是一個(gè)真命題.
證明如下:
在圖(2)中,連接DM,并延長(zhǎng)交BC于E,連接AE,則有DE⊥BC.
因?yàn)锳D⊥面ABC,所以AD⊥AE.
又AM⊥DE,所以AE2=EM•ED.
于是=S△BCM•S△BCD
故有S△ABC2=S△BCM•S△BCD
點(diǎn)評(píng):本題考查類(lèi)比推理及利用平面的性質(zhì)證明空間的結(jié)論.考查空間想象能力,邏輯思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖(1),在三角形ABC中,AB⊥AC,若AD⊥BC,則AB2=BD.BC;若類(lèi)比該命題,如圖(2),三棱錐A-BCD中,AD⊥面ABC,若A點(diǎn)在三角形BCD所在平面內(nèi)的射影為M,則有什么結(jié)論?命題是否是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在三角形中,,若,則;若類(lèi)比該命題,如圖(2),三棱錐中,,若點(diǎn)在三角形所在平面內(nèi)的射影為,則有什么結(jié)論?命題是否是真命題.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在三角形中,,若,則;若類(lèi)比該命題,如圖(2),三棱錐中,,若點(diǎn)在三角形所在平面內(nèi)的射影為,則有什么結(jié)論?命題是否是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖(1),在三角形ABC中,AB⊥AC,若AD⊥BC,則AB2=BD.BC;若類(lèi)比該命題,如圖(2),三棱錐A-BCD中,AD⊥面ABC,若A點(diǎn)在三角形BCD所在平面內(nèi)的射影為M,則有什么結(jié)論?命題是否是真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案