已知ax2-b=0是關(guān)于x的一元二次方程,其中a、b∈{1,2,3,4},解集不同的一元二次方程的個(gè)數(shù)為
 
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問題
專題:排列組合
分析:先任意選兩個(gè),可以重復(fù),共有16種,再排除相等的,問題得以解決
解答: 解:因?yàn)閍x2-b=0,所以x2=
b
a

從{1,2,3,4},任意取兩個(gè),共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有4×4=16種,其中(1,1),(2,2),(3,3),(4,4)中
b
a
=1,(1,2),(2,4)中
b
a
=2,(2,1),(4,2)中
b
a
=
1
2

b
a
不同的個(gè)數(shù)為16-3-1-1=11
故解集不同的一元二次方程的個(gè)數(shù)為11個(gè),
故答案為:11
點(diǎn)評(píng):本題考查了排列組合中的數(shù)字問題,關(guān)鍵是不要忘了需要排除
b
a
的值相等的情況,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若過點(diǎn)P(1-a,1+a)和Q(3,2a)的直線的傾斜角α不是鈍角,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①通項(xiàng)公式為an=a1•2n-1的數(shù)列是首項(xiàng)為a1公比為2的等比數(shù)列;
②有兩個(gè)側(cè)面同時(shí)與底面垂直的棱柱一定是直棱柱;
③直線y=x•tanθ+1的傾斜角是θ;
④函數(shù)y=f(x)(x∈R)的值域是集合A,則函數(shù)y=f(-2x+1)(x∈R)的值域也是A.
其中正確的命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+2x-3與函數(shù)g(x)的圖象關(guān)于x=3對(duì)稱,則g(x)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M、N分別為A1B和AC上的點(diǎn),A1M=AN=
2
3
a,如圖.
(1)求證:MN∥面BB1C1C;
(2)求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為曲線C1
x=1+cosθ
y=sinθ
,(θ為參數(shù))上一點(diǎn),則它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)四面體ABCD的六條棱的長(zhǎng)分別為1,1,
2
,
2
,
2
2
,則其外接球的表面積為( 。
A、
2
B、
3
C、
4
6
π
27
D、
8
6
π
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-2,Sn=2an-3n(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a10=19,a2=3,an+1+an-1=2an(n≥2)
(1)求{an}的通項(xiàng)公式;
(2)若bn=a an,cn=an•bn,求數(shù)列{cn}的前n項(xiàng)之和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案