【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
與直線
平行,且過坐標(biāo)原點,圓
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓
的極坐標(biāo)方程;
(2)設(shè)直線和圓
相交于點
、
兩點,求
的周長.
【答案】(1)直線的極坐標(biāo)方程為
。圓C的極方程為
;(2)
.
【解析】
(1)先將直線和圓的參數(shù)方程化為普通方程,進而可得其極坐標(biāo)方程;
(2)將直線的極坐標(biāo)方程代入圓的極坐標(biāo)方程,可求出關(guān)于的方程,由
,即可求出結(jié)果.
(I)因為直線的參數(shù)方程為
(
為參數(shù)),所以直線
的斜率為1,因為直線
與直線
平行,且過坐標(biāo)原點,所以直線
的直角坐標(biāo)方程為
,所以直線
的極坐標(biāo)方程為
因為圓C的參數(shù)方程為(
為參數(shù)),
所以圓C的普通方程為,
即,
所以圓C的極方程為
(Ⅱ)把直線m的極坐標(biāo)方程代入
中得,
,
所以
所以△ABC的周長為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求的極值;
(2)若時,
與
的單調(diào)性相同,求
的取值范圍;
(3)當(dāng)時,函數(shù)
,
有最小值,記
的最小值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分),分為6組:,
,
,
,
,
,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學(xué)生中隨機抽取一名學(xué)生,該學(xué)生的比賽成績不低于80分”,估計
的概率;
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”’,比賽成績低于80分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(
是自然對數(shù)的底數(shù),
).
(1)求的最值;
(2)討論方程的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位、百位、萬位數(shù)用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系中,射線
:
,曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的方程為
;以原點為極點,
軸的非負半軸為極軸建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
.
(Ⅰ)寫出射線的極坐標(biāo)方程以及曲線
的普通方程;
(Ⅱ)已知射線與
交于
,
,與
交于
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點為坐標(biāo)原點,直線
經(jīng)過拋物線
的焦點
.
(1)若點到直線
的距離為
, 求直線
的方程;
(2)設(shè)點是直線
與拋物線
在第一象限的交點.點
是以點
為圓心,
為半徑的圓與
軸負半軸的交點.試判斷直線
與拋物線
的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10名教師,其中男教師6名,女教師4名.
(1)現(xiàn)要從中選2名去參加會議,有多少種不同的選法?
(2)選出2名男教師或2名女教師去外地學(xué)習(xí)的選法有多少種?
(3)現(xiàn)要從中選出男、女老師各2名去參加會議,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
時取得極值,求實數(shù)
的值;
(2)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com