20.橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}=1$,過右焦點F且斜率為1的直線L與橢圓C相交于A,B兩點
(1)求右焦點F的坐標(biāo)
(2)求弦長AB的值.

分析 (1)求出橢圓的a,b,可得c=$\sqrt{{a}^{2}-^{2}}$=1,即可得到右焦點;
(2)將直線y=x-1代入橢圓方程,消去y,運用韋達定理和弦長公式,計算即可得到所求值.

解答 解:(1)橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}=1$的a=2,b=$\sqrt{3}$,
c=$\sqrt{{a}^{2}-^{2}}$=1,
可得右焦點F的坐標(biāo)為(1,0);
(2)由橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,直線l:y=x-1聯(lián)立得:
7x2-8x-8=0,
設(shè)A(x1,y1),B(x2,y2),
所以${x_1}+{x_2}=\frac{8}{7},{x_1}{x_2}=-\frac{8}{7}$,
則|AB|=$\sqrt{1+1}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{\frac{64}{49}+\frac{32}{7}}$=$\frac{24}{7}$.

點評 本題考查橢圓的焦點的求法,考查弦長的求法,注意運用直線和橢圓方程聯(lián)立,運用韋達定理和弦長公式,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$a={log_{0.3}}0.2,b={0.2^{0.5}},c=lg0.4$,則a、b、c之間的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.橢圓$\frac{x^2}{100}+\frac{y^2}{64}$=1的焦點為F1、F2,橢圓上的點P滿足∠F1PF2=600,則△F1PF2的面積是(  )
A.$\frac{{64\sqrt{3}}}{3}$B.$\frac{{91\sqrt{3}}}{3}$C.$\frac{{16\sqrt{3}}}{3}$D.$\frac{64}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=x2+2(a-1)x+2在(-∞,4]上單調(diào)遞減,則a的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.先后拋擲兩枚均勻的正方體骰子,觀察向上的點數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)所得點數(shù)之和是11的概率是多少?
(3)所得點數(shù)之和是4的倍數(shù)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.從一堆產(chǎn)品(其中正品與次品都多于2件)中任取2件,觀察正品件數(shù)和次品件數(shù).則下列事件是互斥事件但不是對立事件的是( 。
A.恰好有1件次品和恰好有2件次品B.至少有1件次品和全是次品
C.至少有1件正品和至少有1件次品D.至少有1件次品和全是正品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,短軸的一個端點到右焦點的距離為$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點,坐標(biāo)原點O到直線l的距離為$\frac{{\sqrt{3}}}{2}$,求△AOB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中點,O是AC與BE的交點,將△ABE沿BE折起到圖2中△A1BE的位置,得到四棱錐A1-BCDE.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當(dāng)平面A1BE⊥平面BCDE時,四棱錐A1-BCDE的體積為36$\sqrt{2}$,求點E到平面A1CD的距離h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),作直線l交橢圓于P,Q兩點,M為線段PQ的中點,O為坐標(biāo)原點,設(shè)直線l的斜率為k1,直線OM的斜率為k2,k1k2=-$\frac{2}{3}$.
(1)求橢圓C的離心率;
(2)設(shè)直線l與x軸交于點D(-$\sqrt{3}$,0),且滿足$\overrightarrow{DP}$=2$\overrightarrow{QD}$,當(dāng)△OPQ的面積最大時,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案