10.已知$a={log_{0.3}}0.2,b={0.2^{0.5}},c=lg0.4$,則a、b、c之間的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.a>c>bD.b>c>a

分析 利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵利用對數(shù)函數(shù),指數(shù)函數(shù)的圖象可得:log${\;}_{0.3}^{0.2}$>${log}_{0.3}^{0.3}$=1>0.20.5>0>lg0.4,
∴a>b>c.
故選:A.

點評 本題主要考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題:①三角形是一個是平面;②平行四邊形是一個平面;③梯形是一個平面圖形;④四邊相等的四邊形是菱形.其中正確的是( 。
A.B.①②C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換,
(1)求M-1;
(2)求直線4x-9y=1在M2的作用下的新曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$\frac{x^2}{4}+{y^2}=1$與直線l:x-y+λ=0相切.
(1)求λ的值;
(2)設(shè)直線$m:x-y+4\sqrt{5}=0$,求橢圓上的點到直線m的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{3}+{y^2}=1$和直線l:x+y-4=0,求橢圓上的點到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,點D是A1C1的中點,則異面直線AD和BC1所成角的大小為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.e為自然對數(shù)的底數(shù),定義函數(shù)shx=$\frac{{e}^{x}-{e}^{-x}}{2}$,chx=$\frac{{e}^{x}+{e}^{-x}}{2}$,若已知函數(shù)f(x)為奇函數(shù),且滿足f(1)=ch1,當x>0時,f(x)+xf′(x)>shx,則f(x)<$\frac{chx}{x}$的解集為(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列程序執(zhí)行后輸出的結(jié)果是( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}=1$,過右焦點F且斜率為1的直線L與橢圓C相交于A,B兩點
(1)求右焦點F的坐標
(2)求弦長AB的值.

查看答案和解析>>

同步練習(xí)冊答案