(1)已知,求與垂直的一個(gè)單位向量的坐標(biāo)。

(2)若,求的值

                                      

 

【答案】

 

(1)()     (2)

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點(diǎn)F2,點(diǎn)A是曲線C1,C2在第一象限的交點(diǎn),且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點(diǎn)P(1,
3
),過點(diǎn)P作互相垂直且分別與圓M圓N相交的直線l1,l2,設(shè)l1被圓M截得的弦長(zhǎng)為s,l2被圓N截得的弦長(zhǎng)為t,
s
t
是否為定值?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,A(x0,y0)(x0≠0)是拋物線C上的一定點(diǎn).
(1)已知直線l過拋物線C的焦點(diǎn)F,且與C的對(duì)稱軸垂直,l與C交于Q,R兩點(diǎn),S為C的準(zhǔn)線上一點(diǎn),若△QRS的面積為4,求p的值;
(2)過點(diǎn)A作傾斜角互補(bǔ)的兩條直線AM,AN,與拋物線C的交點(diǎn)分別為M(x1,y1),N(x2,y2).若直線AM,AN的斜率都存在,證明:直線MN的斜率等于拋物線C在點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)A1處的切線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濟(jì)南二模)已知矩形ABCD與正三角形AED所在的平面互相垂直,M、N分別為棱BE、AD的中點(diǎn),AB=1,AD=2,
(1)證明:直線AM∥平面NEC;
(2)求二面角N-CE-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以動(dòng)點(diǎn)P為圓心的圓與直線y=-
1
20
相切,且與圓x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求動(dòng)P的軌跡C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點(diǎn),且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
    (1)求直線L斜率k的取值范圍;
    (2)設(shè)橢圓E的方程為
x2
2
+
y2
a
=1(0<a<2).已知直線L與拋物線C交于A、B兩個(gè)不同點(diǎn),L與橢圓E交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為R,PQ中點(diǎn)為S,若
OR
OS
=0,求E離心率的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案