如圖,點(diǎn)是以線段為直徑的圓上一點(diǎn),于點(diǎn),過點(diǎn)作圓的切線,與的延長線交于點(diǎn),點(diǎn)的中點(diǎn),連結(jié)并延長與相交于點(diǎn),延長的延長線相交于點(diǎn).

(Ⅰ)求證:
(Ⅱ)求證:是圓的切線.
(Ⅰ)詳見試題解析;(Ⅱ)詳見試題解析.

試題分析:(Ⅰ)由可得,從而可得
通過等量代換及題設(shè)“點(diǎn)的中點(diǎn)”可得.
(Ⅱ)目標(biāo)是要證是直角,連結(jié)便可看出只要證得是等腰三角形即可.顯然是等腰三角形。因?yàn)橹睆缴系膱A周角是直角,,所以是直角三角形. 由(Ⅰ)得所以,從而本題得證.
試題解析:證明:(Ⅰ) 是圓的直徑,是圓的切線,
.又,

可以得知,   

的中點(diǎn),.                        5分

(Ⅱ)連結(jié)
是圓的直徑,
中,由(Ⅰ)得知是斜邊的中點(diǎn),

,
是圓的切線,
,
是圓的切線.                                                   10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB過圓心O,交于F(不與B重合),直線相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC

求證:(1);(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結(jié)EC、CD.

(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于

A.4π  B.8π
C.12π  D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,與圓相切于點(diǎn),直線交圓兩點(diǎn),弦垂直.則下面結(jié)論中,錯(cuò)誤的結(jié)論是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓的割線交圓、兩點(diǎn),割線經(jīng)過圓心.已知,,.則圓的半徑    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在中,斜邊,直角邊,如果以為圓心的圓與相切于,則⊙的半徑長為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,AB、CD是圓的兩條弦,
且AB是線段CD的中垂線,已知AB=6,CD=,則線段AC的長度為     

查看答案和解析>>

同步練習(xí)冊(cè)答案