【題目】已知函數(shù)f(x)= x3﹣x2 x,則f(﹣a2)與f(﹣1)的大小關系為(
A.f(﹣a2)≤f(﹣1)
B.f(﹣a2)<f(﹣1)
C.f(﹣a2)≥f(﹣1)
D.f(﹣a2)與f(﹣1)的大小關系不確定

【答案】A
【解析】解:求導函數(shù)可得
令f′(x)>0可得x<﹣1或x>
∴函數(shù)在(﹣∞,﹣1),( ,+∞)上單調增,在(﹣1, )上單調減
即函數(shù)f(x)在(﹣∞,﹣1]上單調遞增,在[﹣1,0]單調遞減
∴f(﹣1)是f(x)在(﹣∞,0]上的最大值
∵﹣a2≤0
∴f(﹣a2)≤f(﹣1).
故選A.
【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調性,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,點A(﹣2,0),B(2,0),C(x,1) (i)若∠ACB是直角,則x=
(ii)若△ABC是銳角三角形,則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y﹣4=0,AC邊上的中線BE所在直線的方程為2x+y﹣3=0.
(1)求直線AB的方程,并把它化為一般式;
(2)求直線BC的方程,并把它化為一般式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)若關于的方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0且a≠1)
(1)求函數(shù)f(x)單調遞增區(qū)間;
(2)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列計算曲線y=cosx(0≤x≤ )與坐標軸圍成的面積:
(1)cosxdx,(2)3 cosxdx,(3) |cosx|dx,(4)面積為3.
用的方法或結果正確的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的極值點;

(2)設,若函數(shù) 內有兩個極值點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)). 

(1)若在其定義域內單調遞增,求實數(shù)的取值范圍;

(2)若,且有兩個極值點 ),求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在10個球中有6個紅球和4個白球(各不相同),不放回地依次摸出2個球,在第一次摸出紅球的條件下,第2次也摸到紅球的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案