【題目】若直線l1和l2是異面直線,l1α,l2β,α∩β=l,則下列命題正確的是( 。
A. l至少與,中的一條相交B. l與,都相交
C. l至多與,中的一條相交D. l與,都不相交
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,).
(1)若在上單調(diào)遞減,求的取值范圍;
(2)當(dāng)時,判斷關(guān)于的方程的解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求的單調(diào)區(qū)間;
(2)求函數(shù)在上的最值;
(3)當(dāng)時,若函數(shù)恰有兩個不同的零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點M,使得二面角MACD的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱中,所有棱長都等于.
(1)當(dāng)點是的中點時,
①求異面直線和所成角的余弦值;
②求二面角的正弦值;
(2)當(dāng)點在線段上(包括兩個端點)運動時,求直線與平面所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述錯誤的是( )
A.已知直線和平面,若點,點且,,則
B.若三條直線兩兩相交,則三條直線確定一個平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知四棱錐的底面為矩形, 底面,且(),, 分別是, 的中點.
(1)當(dāng)為何值時,平面平面?并證明你的結(jié)論;
(2)當(dāng)異面直線與所成角的正切值為2時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點,一個焦點為的橢圓被直線截得的弦的中點的橫坐標(biāo)為.
(1)求此橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,且以為對角線的菱形的一個頂點為,求面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)
圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com