5.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,(t為參數(shù)),以點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓錐曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{3{+sin}^{2}θ}$.
(1)求圓錐曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)若直線l交圓錐曲線C于M,N兩點(diǎn),求|MN|的值.

分析 (1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,(t為參數(shù)),消去參數(shù)化為普通方程.圓錐曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{3{+sin}^{2}θ}$,化為3ρ2+(ρsinθ)2=12,利用ρ2=x2+y2,y=ρsinθ,即可化為直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程代入橢圓的直角坐標(biāo)方程可得:13t2-12$\sqrt{3}$t-36=0,利用|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.

解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,(t為參數(shù)),消去參數(shù)化為:x-$\sqrt{3}$y+1=0.
圓錐曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{3{+sin}^{2}θ}$,化為3ρ2+(ρsinθ)2=12,
可得直角坐標(biāo)方程:3x2+4y2=12,即$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(2)把直線l的參數(shù)方程代入橢圓的直角坐標(biāo)方程可得:13t2-12$\sqrt{3}$t-36=0,
∴t1+t2=$\frac{12\sqrt{3}}{13}$,t1t2=$-\frac{36}{13}$.
由于直線經(jīng)過(guò)焦點(diǎn)(-1,0).
∴|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(\frac{12\sqrt{3}}{13})^{2}-4×(-\frac{36}{13})}$=$\frac{48}{13}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、參數(shù)方程化為普通方程、直線與橢圓相交弦長(zhǎng)問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有公共點(diǎn),求角α的正切值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)在(-∞,+∞)內(nèi)可導(dǎo),且恒有f′(x)>0,則下列結(jié)論正確的是( 。
A.f(x)在R上單調(diào)遞增B.f(x)在R上是常數(shù)C.f(x)在R上不單調(diào)D.f(x)在R上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)滿足f′(x)>0,對(duì)x∈D成立,則f(x)在D上單調(diào)遞增.因?yàn)間′(x)=2x,當(dāng)x>0時(shí),g′(x)>0,所以g(x)在(0,+∞)上單調(diào)遞增.上述推理用的是(  )
A.歸納推理B.合情推理C.演繹推理D.類比推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,⊙O的半徑為17cm,弦AB=30cm,AB所對(duì)的劣弧和優(yōu)弧的中點(diǎn)分別為D、C,求弦AC和BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$,則f(f(-1))=0;函數(shù)y=f(f(x))的零點(diǎn)共有7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=a(x-2)2+2lnx.
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=f(x)-4a+$\frac{1}{4a}$(a≠0),當(dāng)x∈[2,+∞)時(shí),函數(shù)g(x)圖象上的點(diǎn)均在不等式$\left\{\begin{array}{l}{x≥2}\\{y≥x}\end{array}\right.$所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)a、b∈R,且a≠1,若奇函數(shù)f(x)=lg$\frac{1+ax}{1+x}$在區(qū)間(-b,b)上有定義.
(1)求a的值;
(2)求b的取值范圍;
(3)求解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.己知函數(shù)f(x)=-x3+x2+ax+b,g(x)=clnx,其中a,b,c為實(shí)數(shù),若函數(shù)g(x)的圖象恒過(guò)定點(diǎn)P,且函數(shù)f(x)的圖象在點(diǎn)P處的切線與直線x-y-4=0垂直.
(1)求實(shí)數(shù)a、b的值;
(2)設(shè)F(x)=$\left\{\begin{array}{l}{f(x),x<1}\\{g(x)-c,x≥1}\end{array}\right.$
①求函數(shù)F(x)在[-1,e](其中e為自然對(duì)數(shù)的底數(shù))上的最大值;
②曲線y=F(x)上是否存在兩點(diǎn)P,Q.使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?若存在,求出實(shí)數(shù)c的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案