【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長為( )
A. B. C. D.
【答案】C
【解析】分析:記A1在面ABCD內(nèi)的射影為O,O在∠BAD的平分線上,說明∠BAD的平分線即菱形ABCD的對角線AC,求AC1的長.
解答:解:記A1在面ABCD內(nèi)的射影為O,
∵∠A1AB=∠A1AD,
∴O在∠BAD的平分線上,
由O向AB,AD兩邊作垂線,垂足分別為E,F(xiàn),連接A1E,A1F,A1E,A1F分別垂直AB,AD于E,F(xiàn)
∵AA1=3,∠A1AB=∠A1AD=60°,
∴AE=AF=
又四棱柱ABCD-A1B1C1D1的底面ABCD為矩形
∴∠OAF=∠OAE=45°,且OE=OF=,可得OA=
在直角三角形A1OA中,由勾股定理得A1O=
過C1作C1M垂直底面于M,則有△C1MC≌△A1OA,由此可得M到直線AD的距離是,M到直線AB的距離是,C1M=A1O=
所以AC1 ==
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,若是線段上的動(dòng)點(diǎn),則下列結(jié)論不正確的是( )
A. 三棱錐的正視圖面積是定值
B. 異面直線所成的角可為
C. 三棱錐的體積大小與點(diǎn)在線段的位置有關(guān)
D. 直線與平面所成的角可為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)滿足 ,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(﹣1,1]上,方程f(x)﹣4ax﹣a=0有兩個(gè)不等的實(shí)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓的方程;
(2)若圓與直線交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在直線x+3y﹣2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0 , y0),且y0<x0+2,則 的取值范圍是( )
A.[﹣ ,0)
B.(﹣ ,0)??
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種畫橢圓的工具如圖1所示.O是滑槽AB的中點(diǎn),短桿ON可繞O轉(zhuǎn)動(dòng),長桿MN通過N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動(dòng),且DN=ON=1,MN=3,當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)N繞O轉(zhuǎn)動(dòng),M處的筆尖畫出的橢圓記為C,以O(shè)為原點(diǎn),AB所在的直線為x軸建立如圖2所示的平面直角坐標(biāo)系.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線l與兩定直線l1:x﹣2y=0和l2:x+2y=0分別交于P,Q兩點(diǎn).若直線l總與橢圓C有且只有一個(gè)公共點(diǎn),試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(2x+ )+sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)g(x)對任意x∈R,有g(shù)(x)=f(x+ ),求函數(shù)g(x)在[﹣ , ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體是由棱臺(tái)ABC﹣A1B1C1和棱錐D﹣AA1C1C拼接而成的組合體,其底面四邊形ABCD是邊長為2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求證:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1﹣BD﹣C1的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com