18.如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.
(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A-SCD的體積.

分析 (1)推導(dǎo)出AC⊥AB,SA⊥AC,由此能證明AC⊥平面SAB.
(2)由VA-SCD=VS-ACD,能求出三棱錐A-SCD的體積.

解答 證明:(1)∵四棱錐S-ABCD中,底面ABCD為平行四邊形,
AB=3,AC=4,AD=5,
∴BC2=AB2+AC2,AC⊥AB,
∵SA⊥平面ABCD,∴SA⊥AC,
∵AB∩SA=A,∴AC⊥平面SAB.
解:(2)VA-SCD=VS-ACD=$\frac{1}{3}{S}_{△ACD}×SA$,
∵SA⊥平面ABCD,
∴SA是三棱錐S-ACD的高,
S△ACD=$\frac{1}{2}×AC×CD$=$\frac{1}{2}×4×3$=6,
∴VA-SCD=VS-ACD
=$\frac{1}{3}×{S}_{△ACD}×SA$=$\frac{1}{3}×6×2=4$.

點(diǎn)評(píng) 本題考查線面垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)F1,F(xiàn)2為橢圓C1:$\frac{x^2}{a^2}$+$\frac{y{\;}^{2}}{b^2}$=1(a>b>0)與雙曲線C2的公共的左、右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,△MF1F2是以線段MF1為底邊的等腰三角形,若橢圓C1的離心率e∈[${\frac{3}{8}$,$\frac{4}{9}}$].則雙曲線C2的離心率的取值范圍是(  )
A.$[{\frac{3}{2},4}]$B.$[{\frac{3}{2},+∞})$C.(1,4]D.$[{\frac{5}{4},\frac{5}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若cos(65°+α)=$\frac{2}{3}$,其中α為第三象限角,則cos(115°-α)+sin(α-115°)=$\frac{{\sqrt{5}-2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算(字母為正數(shù))
(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$);
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.問(wèn)題“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可變?yōu)椋?{\frac{5}{13}}$)x+(${\frac{12}{13}}$)x=1,考察函數(shù)f(x)=(${\frac{5}{13}}$)x+(${\frac{12}{13}}$)x可知f(2)=1,且函數(shù)f(x)在R上單調(diào)遞減,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx-4>2lg2-x的解集為(4,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=ax-lnx在(${\frac{1}{2}$,+∞)內(nèi)單調(diào)遞增,則a的取值范圍為( 。
A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果方程$\frac{{x}^{2}}{4-m}$+$\frac{{y}^{2}}{m-3}$=1表示雙曲線,則m的取值范圍是( 。
A.(3,4)B.(-∞,3)∪(4,+∞)C.(4,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且     AC=BC=$\sqrt{2}$,O、M分別為AB和VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求直線MC與平面VAB所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖,則f(-$\frac{π}{6}$)+f(-$\frac{π}{12}$)+f(0)=( 。
A.$\frac{1-\sqrt{2}}{2}$B.$\frac{1+\sqrt{2}}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案