“b=0”是“函數(shù)f(x)=ax2+bx+c為偶函數(shù)”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:通過“二次函數(shù)y=ax2+bx+c(a≠0)是偶函數(shù),”根據(jù)二次函數(shù)的對稱性,得其對稱軸是y軸,從而求得b.即可判斷充要條件.
解答:解:由題意,得二次函數(shù)的圖象關(guān)于y軸對稱,
則對稱軸為x=-=0,
則b=0,
故選C.
點評:本題考查函數(shù)的奇偶性,注意二次函數(shù)的對稱軸是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“b=0”是“函數(shù)f(x)=ax2+bx+c為偶函數(shù)”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下判斷正確的是( 。
A、命題“負數(shù)的平方是正數(shù)”不是全稱命題B、命題“?x∈N,x3>x2”的否定是“?x∈N,x3<x2C、“a=1”是“函數(shù)f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分條件D、“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(1,1)為中點的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過點(
.
x
,
.
y
)
;
(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD
;
(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點為F1,F(xiàn)2,P為右支是異于右頂點的任一點,△PF1F2的內(nèi)切圓圓心為T,則點T的橫坐標為a.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“b=0”是“函數(shù)f(x)=ax2+bx+c為偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案