已知數(shù)學公式對任意x∈R恒成立,且a1=9,a2=36,則b=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:根據(jù) bxn+1=b[1+(x-1)]n+1,根據(jù)它的展開式形式,由題意可得 b =9,b=36,由此求出b的值.
解答:∵bxn+1=b[1+(x-1)]n+1=,且a1=9,a2=36,
∴b=9,b=36,解得 b=1,n=9,
故選A.
點評:本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是二次函數(shù),f′(x)是它的導函數(shù),且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年天津一中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知f(x)是二次函數(shù),f′(x)是它的導函數(shù),且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省信陽高中高三第一次大考數(shù)學試卷(理科)(解析版) 題型:解答題

已知f(x)是二次函數(shù),f′(x)是它的導函數(shù),且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省深圳市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知f(x)是二次函數(shù),f′(x)是它的導函數(shù),且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省各地市高考數(shù)學模擬試卷分類匯編02:函數(shù)與導數(shù)(解析版) 題型:解答題

已知f(x)是二次函數(shù),f′(x)是它的導函數(shù),且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t).求S(t)的最小值.

查看答案和解析>>

同步練習冊答案