分析 a1=2且4Sn=an•an+1,(n∈N*),n=1時(shí),解得a2=4.當(dāng)n≥2時(shí),利用遞推關(guān)系可得an+1-an-1=4.于是數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)都成等差數(shù)列,公差為4.即可得出an.
數(shù)列{bn}中,b1=$\frac{1}{4}$,且bn+1=$\frac{n_{n}}{(n+1)-_{n}}$(n∈N*),兩邊取倒數(shù)化為:$\frac{1}{(n+1)_{n+1}}$-$\frac{1}{n_{n}}$=$\frac{1}{n+1}-\frac{1}{n}$.利用“累加求和”與“裂項(xiàng)求和”方法即可得出bn,于是cn=$\frac{n}{{2}^{n}}$,再利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:a1=2且4Sn=an•an+1,(n∈N*),∴4a1=a1•a2,解得a2=4.
當(dāng)n≥2時(shí),4an=4(Sn-Sn-1)=an•an+1-an-1an,an≠0.
∴an+1-an-1=4.
∴數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)都成等差數(shù)列,公差為4.
∴an=a2k-1=2+4(k-1)=4k-2=2n,
an=a2k=4+4(k-1)=4k=2n.
可得?n∈N*,an=2n.
數(shù)列{bn}中,b1=$\frac{1}{4}$,且bn+1=$\frac{n_{n}}{(n+1)-_{n}}$(n∈N*),
兩邊取倒數(shù)化為:$\frac{1}{(n+1)_{n+1}}$-$\frac{1}{n_{n}}$=$\frac{1}{n+1}-\frac{1}{n}$.
∴$\frac{1}{n_{n}}$=$(\frac{1}{n_{n}}-\frac{1}{(n-1)_{n}})$+$(\frac{1}{(n-1)_{n-1}}-\frac{1}{(n-2)_{n-2}})$+…+$(\frac{1}{2_{2}}-\frac{1}{_{1}})$+$\frac{1}{_{1}}$
=$(\frac{1}{n}-\frac{1}{n-1})$+$(\frac{1}{n-1}-\frac{1}{n-2})$+…+$(\frac{1}{2}-1)$+4
=$\frac{1}{n}$+3.
可得:bn=$\frac{1}{3n+1}$.
∴cn=$\frac{{a}_{n}}{{2}^{\frac{1}{3_{n}}+\frac{2}{3}}}$=$\frac{2n}{{2}^{\frac{1+3n}{3}+\frac{2}{3}}}$=$\frac{n}{{2}^{n}}$,
則{cn}的前n項(xiàng)Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{2+n}{{2}^{n+1}}$.
∴Tn=2-$\frac{2+n}{{2}^{n}}$.
故答案為:2-$\frac{2+n}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、“裂項(xiàng)求和”與“累加求和”方法、“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的相同公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a?平面a,b?平面β且α∩β=∅ | B. | a?平面α,b?平面α | ||
C. | a?平面α,b?平面β | D. | a∩b=∅且a不平行于b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,2) | B. | (-3,2) | C. | (3,-2) | D. | (-3,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com