分析 (1)由已知可得A1D⊥平面ABC,進(jìn)一步得到BC⊥A1D,再由BC⊥CC1,可得BC⊥AA1,然后利用線面垂直的判定得答案;
(2)直接利用等積法化V${\;}_{C-{A}_{1}{B}_{1}B}$為${V}_{{A}_{1}-ABC}$求解.
解答 (1)證明:由已知得,A1D⊥平面ABC,
又BC?平面ABC,BC⊥A1D,∴BC⊥A1D,
∵BC⊥CC1,AA1∥CC1,∴BC⊥AA1,
又A1D∩AA1=A1,A1D?平面ACC1A1,AA1?平面ACC1A1,
∴BC⊥平面ACC1A1;
(2)解:由(1)及AC?平面ACC1A1,得BC⊥AC,
在△A1AD中,${A}_{1}D=\sqrt{{A}_{1}{A}^{2}-A{D}^{2}}=1$,
∴${V}_{C-{A}_{1}{B}_{1}B}={V}_{C-{A}_{1}AB}={V}_{{A}_{1}-ABC}$=$\frac{1}{3}×\frac{1}{2}×2×2×1=\frac{2}{3}$.
點(diǎn)評(píng) 本題考查直線與平面垂直的判斷,訓(xùn)練了利用等積法求多面體的體積,考查空間想象能力和思維能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(13+3\sqrt{7})c{m^2}$ | B. | $(12+4\sqrt{3})c{m^2}$ | C. | $(18+3\sqrt{7})c{m^2}$ | D. | $(15+3\sqrt{7})c{m^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | ||
C. | 2π | D. | 與a的值的大小有關(guān) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com