【題目】某地區(qū)城鄉(xiāng)居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是( )
A.城鄉(xiāng)居民儲蓄存款年底余額逐年增長
B.農(nóng)村居民的存款年底余額所占比重逐年上升
C.到2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額
D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降
【答案】C
【解析】
A. 根據(jù)條形圖判斷.B. 根據(jù)城鄉(xiāng)儲蓄構(gòu)成百分比判斷.C. 根據(jù)城鄉(xiāng)儲蓄構(gòu)成百分比判斷.D. 根據(jù)城鄉(xiāng)儲蓄構(gòu)成百分比判斷.
A. 由城鄉(xiāng)居民儲蓄存款年底余額條形圖可知,正確.
B.由城鄉(xiāng)儲蓄構(gòu)成百分比可知,農(nóng)村居民的存款年底余額所占比重逐年上升,正確.
C. 由城鄉(xiāng)儲蓄構(gòu)成百分比可知,農(nóng)村居民存款年底總余額,城鎮(zhèn)居民存款年底總余額,沒有超過,錯誤.
D. 由城鄉(xiāng)儲蓄構(gòu)成百分比可知,城鎮(zhèn)居民存款年底余額所占的比重從逐年下降,正確.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,為橢圓上任意一點,當時,的面積為,且.
(1)求橢圓的方程;
(2)已知直線經(jīng)點,與橢圓交于不同的兩點、,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:a=1時,f(x)+g(x)﹣(1)lnx>e.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】哈三中總務(wù)處的老師要購買學校教學用的粉筆,并且有非常明確的判斷一盒粉筆是“優(yōu)質(zhì)產(chǎn)品”和“非優(yōu)質(zhì)產(chǎn)品”的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據(jù)以往的經(jīng)驗,其中會有某些盒的粉筆為非優(yōu)質(zhì)產(chǎn)品,其余的都為優(yōu)質(zhì)產(chǎn)品.并且每箱含有0,1,2盒非優(yōu)質(zhì)產(chǎn)品粉筆的概率為0.7,0.2和0.1.為了購買該品牌的粉筆,校總務(wù)主任設(shè)計了一種購買的方案:欲買一箱粉筆,隨機查看該箱的4盒粉筆,如果沒有非優(yōu)質(zhì)產(chǎn)品,則購買,否則不購買.設(shè)“買下所查看的一箱粉筆”為事件,“箱中有件非優(yōu)質(zhì)產(chǎn)品”為事件.
(1)求,,;
(2)隨機查看該品牌粉筆某一箱中的四盒,設(shè)為非優(yōu)質(zhì)產(chǎn)品的盒數(shù),求的分布列及期望;
(3)若購買100箱該品牌粉筆,如果按照主任所設(shè)計方案購買的粉筆中,箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望比隨機購買的箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望大10,則所設(shè)計的方案有效.討論該方案是否有效.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點,兩個焦點分別為.
(1)求橢圓的方程;
(2)過的直線與橢圓相交于兩點,若的內(nèi)切圓半徑為,求以為圓心且與直線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為進一步深化“平安校園”創(chuàng)建活動,加強校園安全教育宣傳,某高中對該校學生進行了安全教育知識測試(滿分100分),并從中隨機抽取了200名學生的成績,經(jīng)過數(shù)據(jù)分析得到如圖1所示的頻數(shù)分布表,并繪制了得分在以及的莖葉圖,分別如圖23所示.
成績 | |||||||
頻數(shù) | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
圖1
(1)求這200名同學得分的平均數(shù);(同組數(shù)據(jù)用區(qū)間中點值作代表)
(2)如果變量滿足且,則稱變量“近似滿足正態(tài)分布的概率分布”.經(jīng)計算知樣本方差為210,現(xiàn)在取和分別為樣本平均數(shù)和方差,以樣本估計總體,將頻率視為概率,如果該校學生的得分“近似滿足正態(tài)分布的概率分布”,則認為該校的校園安全教育是成功的,否則視為不成功.試判斷該校的安全教育是否成功,并說明理由.
(3)學校決定對90分及以上的同學進行獎勵,為了體現(xiàn)趣味性,采用抽獎的方式進行,其中得分不低于94的同學有兩次抽獎機會,低于94的同學只有一次抽獎機會,每次抽獎的獎金及對應的概率分別為:
獎金 | 50 | 100 |
概率 |
現(xiàn)在從不低于90同學中隨機選一名同學,記其獲獎金額為,以樣本估計總體,將頻率視為概率,求的分布列和數(shù)學期望.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為矩形,,,側(cè)面SAD是以AD為斜邊的等腰直角三角形,且平面平面ABCD,M,N分別為AD,SC的中點.
(1)求證:平面SAB.
(2)求直線BN與平面SAB所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com