19.如圖,在三棱柱ABC-A1B1C1中,G為△ABC的重心,$BE=\frac{1}{3}B{C_1}$.
(1)求證:GE∥平面ABB1A1;
(2)若側(cè)面ABB1A1⊥底面ABC,∠A1AB=∠BAC=60°,AA1=AB=AC=2,求直線A1B與平面B1GE所成角θ的正弦值.

分析 (1)連結(jié)CG交AB于O,過G作GD∥AB交BC于D,連結(jié)DE,GE,根據(jù)重心的性質(zhì)得出$\frac{BD}{BC}=\frac{OG}{OC}=\frac{1}{3}$,故而可證平面DGE∥平面ABB1A1,從而得出GE∥平面ABB1A1
(2)連結(jié)A1O,可證A1O⊥平面ABC,以O(shè)為原點建立空間直角坐標(biāo)系,求出$\overrightarrow{{A}_{1}B}$和平面B1GE的法向量$\overrightarrow{n}$的坐標(biāo),即可得出結(jié)論.

解答 證明:(1)連結(jié)CG交AB于O,過G作GD∥AB交BC于D,連結(jié)DE,GE
∵G是△ABC的重心,∴$\frac{BD}{BC}=\frac{OG}{OC}=\frac{1}{3}$,
又$BE=\frac{1}{3}B{C_1}$,∴DE∥CC1,
∴DE∥BB1,
又GD∥AB,GD∩DE=D,AB∩BB1=B,
∴平面GDE∥平面ABB1A1
∵GE?平面ABB1A1,
∴GE∥平面ABB1A1
(2)連結(jié)AO,
∵AA1=2,AO=$\frac{1}{2}AB$=1,∠A1AB=60°,
∴A1O=$\sqrt{4+1-2}$=$\sqrt{3}$.
∴AO2+A1O2=AA12,∴A1O⊥AB.
∵側(cè)面ABB1A1⊥底面ABC,側(cè)面ABB1A1∩底面ABC=AB,A1O?平面ABB1A1,
∴A1O⊥平面ABC.
∵AB=AC,∠BAC=60°,∴△ABC是等邊三角形,
∴OC⊥AB,
以O(shè)為原點,以O(shè)C,OB,OA1為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
則A1(0,0,$\sqrt{3}$),B(0,1,0),G($\frac{\sqrt{3}}{3}$,0,0),B1(0,2,$\sqrt{3}$),C1($\sqrt{3}$,1,$\sqrt{3}$),
∴$\overrightarrow{{A}_{1}B}$=(0,1,-$\sqrt{3}$),$\overrightarrow{G{B}_{1}}$=(-$\frac{\sqrt{3}}{3}$,2,$\sqrt{3}$),$\overrightarrow{B{C}_{1}}$=($\sqrt{3}$,0,$\sqrt{3}$),$\overrightarrow{GB}$=(-$\frac{\sqrt{3}}{3}$,1,0),
∴$\overrightarrow{GE}$=(0,1,$\frac{\sqrt{3}}{3}$).
設(shè)平面B1GE的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{-\frac{\sqrt{3}}{3}x+2y+\sqrt{3}z=0}\\{y+\frac{\sqrt{3}}{3}z=0}\end{array}\right.$,
令z=$\sqrt{3}$得$\overrightarrow{n}$=($\sqrt{3}$,-1,$\sqrt{3}$).
∴sinθ=|$\frac{-1-3}{\sqrt{1+3}•\sqrt{3+1+3}}$|=$\frac{2\sqrt{7}}{7}$.

點評 本題考查了線面平行的判斷,空間向量的應(yīng)用與線面角的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等比數(shù)列的前三項分別是a-1,a+1,a+4,則數(shù)列{an}的通項公式為(  )
A.an=4×($\frac{3}{2}$)nB.an=4×($\frac{3}{2}$)n-1C.an=4×($\frac{2}{3}$)nD.an=4×($\frac{2}{3}$)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若過點P(1,1)可作圓C:x2+y2+mx+my+2=0的兩條切線,則實數(shù)m的取值范圍是( 。
A.(2,+∞)B.(-4,+∞)C.(-2,+∞)D.(-4,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.時鐘的分針在1點到1點45分這段時間里轉(zhuǎn)過的弧度數(shù)是-$\frac{3}{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R),
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間
(2)若f(x)在$(0\;,\;\frac{1}{2})$上無零點,求a的最小值
(3)若?x0∈(0,e],?x1≠x2∈(0,e],使得f(xi)=g(x0)成立(i=1,2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知焦點為F的拋物線C:y2=2px(p>0))上有一點M(m,2$\sqrt{2}$),以M為圓心、|MF|為半徑的圓被y軸截得的弦長為2$\sqrt{5}$.
(1)求|MF|;
(2)若傾斜角為$\frac{π}{4}$且經(jīng)過點(2,0)的直線l與拋物線C相交于A、B兩點,求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若點P(cosα,sinα)在直線y=-3x上,則$tan(α+\frac{π}{4})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在實數(shù)集R上的函數(shù)f(x),滿足f(x)=f(2-x)=f(x-2),當(dāng)x∈[0,1]時,f(x)=x•2x.則函數(shù)g(x)=f(x)-|lgx|的零點個數(shù)為(  )
A.99B.100C.198D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.雙曲線C的中心在原點,焦點在y軸上,離心率為$\sqrt{2}$,且一個頂點是函數(shù)y=lnx在(1,0)處的切線與y軸交點,則雙曲線的標(biāo)準(zhǔn)方程為y2-x2=1.

查看答案和解析>>

同步練習(xí)冊答案