【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個極值點,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)的取值對導(dǎo)函數(shù)的正負的影響分類討論即可.
(2)根據(jù)題意,需求的最值,結(jié)合(1)可得且,于是此式可轉(zhuǎn)化為關(guān)于的函數(shù),再利用導(dǎo)數(shù)求其最值即可.
(1)由題意得,
,
令.
①當時,恒成立,則在上單調(diào)遞減.
②當時,,函數(shù)與軸有兩個不同的交點,
則,
所以當時,單調(diào)遞增;
當時,單調(diào)遞減.
③當時,,函數(shù)與軸有兩個不同的交點,
則,
所以時,單調(diào)遞減;
時,單調(diào)遞增;
時,單調(diào)遞減.
綜上所述:當時,在上單調(diào)遞減.
當時,時,單調(diào)遞增;
時,單調(diào)遞減.
當時,時,單調(diào)遞減;
時,單調(diào)遞增;
時,單調(diào)遞減.
(2)由(1)知:時有兩個極值點,
且為方程的兩根,
.
.
所以.
所以在時恒成立.
令,則.
令則,
所以在上單調(diào)遞減.又,
所以在上恒成立,即.所以.
所以在上為減函數(shù).所以.
所以,即的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當點為直線上的定點時,求直線的方程;
(3) 當點在直線上移動時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:已知函數(shù)在上的最小值為,若恒成立,則稱函數(shù)在上具有“”性質(zhì).
()判斷函數(shù)在上是否具有“”性質(zhì)?說明理由.
()若在上具有“”性質(zhì),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用aij表示i行第j個數(shù)(i,j∈N+).此表中ail=aii=i,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其“肩膀”上的兩數(shù)之和.
(1)寫出數(shù)表的第六行(從左至右依次列出).
(2)設(shè)第n行的第二個數(shù)為bn(n≥2),求bn.
(3)令,記Tn為數(shù)列前n項和,求的最大值,并求此時n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=4x焦點F的直線交拋物線于A、B兩點,交其準線于點C,且A、C位于x軸同側(cè),若|AC|=2|AF|,則|BF|等于( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 命題“若,則”的逆命題是真命題
B. 命題“存在”的否定是:“任意”
C. 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D. 已知,則“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為集合上的函數(shù)滿足:①;②();③、、成等比數(shù)列;這樣的不同函數(shù)的個數(shù)為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家“精準扶貧、精準脫貧”的號召,某貧困縣在精準推進上下實功,在在精準落實上見實效現(xiàn)從全縣扶貧對象中隨機抽取人對扶貧工作的滿意度進行調(diào)查,以莖葉圖中記錄了他們對扶貧工作滿意度的分數(shù)(滿分分)如圖所示,已知圖中的平均數(shù)與中位數(shù)相同.現(xiàn)將滿意度分為“基本滿意”(分數(shù)低于平均分)、“滿意”(分數(shù)不低于平均分且低于分)和“很滿意”(分數(shù)不低于分)三個級別.
(1)求莖葉圖中數(shù)據(jù)的平均數(shù)和的值;
(2)從“滿意”和“很滿意”的人中隨機抽取人,求至少有人是“很滿意”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com