【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓過右焦點(diǎn)的弦為、過原點(diǎn)的弦為,若,求證:為定值.

【答案】(Ⅰ) ;(Ⅱ)證明見解析.

【解析】

試題分析:

()由題意結(jié)合點(diǎn)到直線距離公式可得.結(jié)合離心率計(jì)算公式有.則橢圓的方程為.

()對直線的斜率分類討論:當(dāng)直線的斜率不存在時(shí),.當(dāng)直線的斜率存在時(shí),設(shè),,,,聯(lián)立直線方程與橢圓方程有,由弦長公式可得.聯(lián)立直線與橢圓方程,結(jié)合弦長公式有.計(jì)算可得.據(jù)此可得:為定值.

試題解析:

Ⅰ)依題意,原點(diǎn)到直線的距離為,

則有.

,得.

∴橢圓的方程為.

Ⅱ)證明:(1)當(dāng)直線的斜率不存在時(shí),易求,

.

(2)當(dāng)直線的斜率存在時(shí),

設(shè)直線的斜率為,依題意,

則直線的方程為,直線的方程為.

設(shè),,,,

,

.

整理得,則.

.

.

綜合(1)(2),為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對任意的恒成立;④存在三個(gè)點(diǎn),,使得為等邊三角形.其中真命題的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓)的圓心為點(diǎn),直線

(1)若,求直線被圓所截得弦長的最大值;

(2)若直線是圓心下方的切線,當(dāng)上變化時(shí),的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=Acos(ωxφ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移個(gè)單位長度后得到函數(shù)f(x)的圖象.求:

(1)函數(shù)f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中為正方形,分別為的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面;其中正確的是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù), 是數(shù)列的前項(xiàng)和,且.

1)求數(shù)列的通項(xiàng)公式;

2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個(gè)頂點(diǎn)上,點(diǎn)是弧的中點(diǎn),現(xiàn)欲在線段上找一處開挖工作坑(不與點(diǎn),重合),為鋪設(shè)三條地下天燃?xì)夤芫,,,已知米,,記,該三條地下天燃?xì)夤芫的總長度為米.

(1)將表示成的函數(shù),并寫出的范圍;

(2)請確定工作坑的位置,使此處地下天燃?xì)夤芫的總長度最小,并求出總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲同學(xué)參加化學(xué)競賽初賽,考試分為筆試、口試、實(shí)驗(yàn)三個(gè)項(xiàng)目,各單項(xiàng)通過考試的概率依次為、,筆試、口試、實(shí)驗(yàn)通過考試分別記4分、2分、4分,沒通過的項(xiàng)目記0分,各項(xiàng)成績互不影響.

(Ⅰ)若規(guī)定總分不低于8分即可進(jìn)入復(fù)賽,求甲同學(xué)進(jìn)入復(fù)賽的概率;

(Ⅱ)記三個(gè)項(xiàng)目中通過考試的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,

(1)證明:平面;

(2)證明:

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案