1.在2013年至2016年期間,甲每年6月1日都到銀行存入m元的一年定期儲蓄,若年利率為q保持不變,且每年到期的存款本息自動轉為新的一年定期,到2017年6月1日甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是( 。
A.m(1+q)4B.m(1+q)5C.$\frac{m[(1+q)^{4}-(1+q)]}{q}$元D.$\frac{m[(1+q)^{5}-(1+q)]}{q}$元

分析 2013年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q)4,2014年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q)3,2015年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q)2,2016年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q),由此利用等比數(shù)列前n項和公式能求出到2017年6月1日甲去銀行將所有存款的本息全部取回,取回的金額.

解答 解:2013年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q)4,
2014年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q)3,
2015年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q)2
2016年6月1日到銀行存入m元的一年定期儲蓄,到2017年6月1日本息和為:m(1+q),
∴到2017年6月1日甲去銀行將所有存款的本息全部取回,則取回的金額是:
S=m(1+q)(1+q)+m(1+q)2+m(1+q)3+m(1+q)4=$\frac{m(1+q)[1-(1+q)^{4}]}{1-(1+q)}$=$\frac{m[(1+q)^{5}-(1+q)]}{q}$.
故選:D.

點評 本題考查等比數(shù)列的前四項和的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}$(e是自然對數(shù)的底數(shù)),f(x)的圖象在x=-$\frac{1}{2}$處的切線方程為y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值;
(2)探究直線y=$\frac{3}{4}x+\frac{9}{8}$.是否可以與函數(shù)g(x)的圖象相切?若可以,寫出切點的坐標,否則,說明理由;
(3)證明:當x∈(-∞,2]時,f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設不等式$\left\{\begin{array}{l}{y>1}\\{2x-y≥0}\end{array}\right.$,表示的平面區(qū)域為D.若曲線y=ax2+1上存在無數(shù)個點在D內(nèi),則實數(shù)a的取值范圍是( 。
A.(0,2)B.(1,+∞)C.(0,1)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.2017年2月為確保食品安全,鞍山市質(zhì)檢部門檢查1000袋方便面的質(zhì)量,抽查總量的2%,在這個問題中,下列說法正確的是( 。
A.總體是指這箱1000袋方便面B.個體是一袋方便面
C.樣本是按2%抽取的20袋方便面D.樣本容量為20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,a,b,c分別為角A,B,C的對邊,$B=\frac{2π}{3}$,若a2+c2=4ac,則$\frac{{sin({A+C})}}{sinAsinC}$=$\frac{10\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)$f(x)=3\sqrt{3}sinωx({ω>0})$的部分圖象如圖所示,點A,B是圖象的最高點,點C是圖象的最低點,且△ABC是正三角形,則f(1)+f(2)+f(3)的值為( 。
A.$\frac{9}{2}$B.$\frac{{9\sqrt{3}}}{2}$C.$9\sqrt{3}+1$D.$\frac{{9({\sqrt{3}+1})}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設全集U=R,集合A={x|x2-3x≥0},B={x∈N|x≤3},則(∁UA)∩B等于( 。
A.B.{0,1}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上任意一點M與左右頂點A1、A2連線的斜率之積為$\frac{3}{4}$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{5}{4}$C.$\frac{\sqrt{7}}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax在點(t,f(t))處的切線方程為y=3x+1
(1)求a的值;
(2)已知k≤2,當x>1時,f(x)>k(1-$\frac{3}{x}$)+2x-1恒成立,求實數(shù)k的取值范圍;
(3)對于在(0,1)中的任意一個常數(shù)b,是否存在正數(shù)x0,使得e${\;}^{f({x}_{0}+1)-3{x}_{0}-2}$+$\frac{2}$x02<1?請說明理由.

查看答案和解析>>

同步練習冊答案