【題目】在三棱錐ABCD中,△ABD和△ACD是邊長(zhǎng)為2的等邊三角形,,OE分別是BC、AC的中點(diǎn).

1)求證:OE∥平面ABD;

2)求證:平面ABC⊥平面BCD

3)求三棱錐ABCD的表面積.

【答案】1)見(jiàn)解析(2)見(jiàn)解析(34+2

【解析】

1)由O、E分別是BCAC的中點(diǎn),可得OEAB,由線面平行的判定定理可得OE∥平面ABD;

2)連接AODO,可得AOBCDOBC,可得∠AOD為二面角ABCD的平面角,由已知條件可得∠AOD90°,則平面ABC⊥平面BCD;

3)分別計(jì)算出SABC、SABD、SACDSCBD,相加可得求三棱錐ABCD的表面積.

1)證明:OE分別是BC、AC的中點(diǎn),可得OEAB,

OE平面ABDAB平面ABD,可得OE∥平面ABD

2)證明:連接AO,DO

ABACBDDC2,可得AOBCDOBC,

可得∠AOD為二面角ABCD的平面角,

BC2,可得AODO

在△AOD中,AO2+DO2AD2

可得∠AOD90°,

則平面ABC⊥平面BCD

3)三棱錐ABCD的表面積為SABC+SABD+SACD+SCBD2×222222×24+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說(shuō)法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱柱的主視圖和俯視圖如圖所示(圖中一格為單位正方形),D、D1分別為棱ACA1C1的中點(diǎn).

1)求側(cè)(左)視圖的面積,并證明平面A1ACC1⊥平面B1BDD1

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,,三個(gè)條件中任選一個(gè)補(bǔ)充在下面問(wèn)題中,并加以解答.

已知的內(nèi)角AB,C的對(duì)邊分別為ab,c,若,______,求的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,焦距為2

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為點(diǎn),與圓的另一個(gè)交點(diǎn)為點(diǎn),是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足

1)求點(diǎn)的軌跡方程;

2)經(jīng)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面坐標(biāo)系中xOy中,已知直線l的參數(shù)方程為t為參數(shù)),曲線C的參數(shù)方程為為參數(shù)).O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.

1)求曲線C的普通方程和直線l的極坐標(biāo)方程;

2)設(shè)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上任一點(diǎn),的距離之和為4.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),設(shè)直線不經(jīng)過(guò)點(diǎn),交于,兩點(diǎn),若直線的斜率與直線的斜率之和為,判斷直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,, ,其頻率分布直方圖如圖所示.

(1)若樣本中月均用電量在的居民有戶,求樣本容量;

(2)求月均用電量的中位數(shù);

(3)在月均用電量為,,,的四組居民中,用分層隨機(jī)抽樣法抽取戶居民,則月均用電量在的居民應(yīng)抽取多少戶?

查看答案和解析>>

同步練習(xí)冊(cè)答案