如圖,四棱錐P-ABCD的底面ABCD為平行四邊形,側(cè)面PAD為等邊三角形,平面PAD⊥平面ABCD,AD=DB=數(shù)學公式
(1)若M為PC上任一點,求證:平面MBD⊥平面PAD;
(2)若四棱錐P-ABCD的體積為數(shù)學公式,求AD長.

(1)證明:如圖,

取AD中點N,連接PN,
∵△PAD為正三角形,∴PN⊥AD,
又∵面PAD⊥面ABCD,∴PN⊥面ABCD,
又BD?面ABCD,∴PN⊥BD,
在△ABD中,∵AD=BD=,

∴BD⊥AD,
又AD∩PN=N,∴BD⊥面PAD.
又BD?面BDM,∴面MBD⊥面PAD.
(2)解:設AD=x,則AB=x,
過D作DG⊥AB于G,
∵△ADB為等要直角三角形,∴

在等邊三角形PAD中,PN=
=,得:x=
即AD=
分析:(1)要證平面MBD⊥平面PAD,只要證其中一個面經(jīng)過另一個面的一條垂線即可,由題目給出的三角形PAD為等邊三角形,取AD中點N,連接PN,有PN⊥AD,而平面PAD⊥平面ABCD,所以可得PN⊥面ABCD,則有PN⊥BD,在三角形ADB中,根據(jù)邊的關系可證AD⊥BD,利用線面垂直的判定可得BD⊥面PAD,則平面MBD⊥平面PAD;
(2)設AD長為x,在底面等腰直角三角形中,把底面平行四邊形的邊和高都用x表示,在等邊三角形PAD中,四棱錐的高PN也用x表示,代入體積公式中可求x的值.
點評:本題考查了空間中線面垂直的判定和性質(zhì),考查了面面垂直的判定,考查了學生的空間想象和思維能力,考查了棱錐的體積公式,此題是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大;當平面ABCD內(nèi)有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案