給出下列四個(gè)命題:
①命題“?x∈R,ex>x”的否定是““?x∈R,ex<x”
②將函數(shù)y=sin(2x+
π
3
)
的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin2x的圖象;
③用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時(shí),從“k”到“k+1”的證明,左邊需增添的一個(gè)因式是2(2k+1);
④函數(shù)f(x)=ex-x-1(x∈R)有兩個(gè)零點(diǎn).
其中所有真命題的序號(hào)是
 
分析:根據(jù)特稱命題的否定方法,可以判斷①的真假;根據(jù)函數(shù)圖象的平移變換法則,可以判斷②的真假;根據(jù)“k”到“k+1”時(shí),等式左邊添加兩項(xiàng)2k+1,2k+2,同時(shí)減少一項(xiàng)k+1,可判斷③的真假;根據(jù)指數(shù)函數(shù)與一次函數(shù)的性質(zhì),判斷出函數(shù)f(x)=ex-x-1(x∈R)的零點(diǎn)個(gè)數(shù),可判斷④的真假,進(jìn)而得到答案.
解答:解:命題“?x∈R,ex>x”的否定是“?x∈R,ex≤x”,故①錯(cuò)誤;
將函數(shù)y=sin(2x+
π
3
)
的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
3
)的圖象,故②錯(cuò)誤;
用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時(shí),從“k”到“k+1”的證 明,左邊需增添的一個(gè)因式是2(2k+1),故③正確;
函數(shù)f(x)=ex-x-1(x∈R)有一個(gè)零點(diǎn),故④錯(cuò)誤.
故答案為:③
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,其中熟練掌握全(稱)稱命題的否定,函數(shù)圖象的平移變換法則,數(shù)學(xué)歸納法的證明步驟,函數(shù)零點(diǎn)的個(gè)數(shù)判斷等基礎(chǔ)知識(shí)點(diǎn)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為(  )
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊答案