【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程.
(1)求直線的普通方程及曲線的直角坐標方程;
(2)設曲線與軸的兩個交點分別為,與軸正半軸的交點為,求直線將分成的兩部分的面積比.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大小;
(2) 求異面直線PB與DC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某物流公司欲將一批海產(chǎn)品從A地運往B地,現(xiàn)有汽車、火車、飛機三種運輸工具可供選擇,這三種工具的主要參考數(shù)據(jù)如下:
運輸工具 | 途中速度() | 途中費用(元/) | 裝卸時間() | 裝卸費用(元/) |
汽車 | 50 | 80 | 2 | 200 |
火車 | 100 | 40 | 3 | 400 |
飛機 | 200 | 200 | 3 | 800 |
若這批海產(chǎn)品在運輸過程中的損耗為300元/,問采用哪種運輸方式比較好,即運輸過程中的費用與損耗之和最小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓: 的左、右焦點分別為,兩焦點與短軸的一個頂點構成等腰直角三角形,且點在橢圓上.
(1)求橢圓的標準方程;
(2)如圖所示,過橢圓的左焦點作直線(斜率存在且不為0)交橢圓于兩點,過右焦點作直線交橢圓于兩點,且,直線交軸于點,動點(異于)在橢圓上運動.
①證明: 為常數(shù);
②當時,利用上述結論求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】作出下列函數(shù)的大致圖像,并寫出函數(shù)的單調區(qū)間和值域:
(1); (2);(3);
(4);(5);(6).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每輪游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓是否出現(xiàn)音樂相互獨立.
(1)玩三輪游戲,至少有一輪出現(xiàn)音樂的概率是多少?
(2)設每輪游戲獲得的分數(shù)為X,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結果和表中數(shù)據(jù),建立關的回歸方程;
(3)若旋轉的弧度數(shù)與單位時間內煤氣輸出量成正比,那么為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱為的“陪伴數(shù)列”.
(Ⅰ)寫出數(shù)列的“陪伴數(shù)列”;
(Ⅱ)若的“陪伴數(shù)列”是.試證明: 成等差數(shù)列.
(Ⅲ)若為偶數(shù),且的“陪伴數(shù)列”是,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com