【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每輪游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓是否出現(xiàn)音樂相互獨(dú)立.

(1)玩三輪游戲,至少有一輪出現(xiàn)音樂的概率是多少?

(2)設(shè)每輪游戲獲得的分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.

【答案】(1) ;(2)見解析

【解析】

(1)利用對立事件求解得出PA1)=PA2)=PA3)=PX=﹣200),求解PA1A2A3)即可得出1﹣PA1A2A3).

(2)X可能的取值為10,20,100,﹣200.運(yùn)用幾何概率公式得出求解相應(yīng)的概率,得出分布列.

(1)設(shè)“第i輪游戲沒有出現(xiàn)音樂”為事件Aii=1,2,3),則

PA1)=PA2)=PA3)=PX=﹣200),

所以“三輪游戲中至少有一輪出現(xiàn)音樂”的概率為1﹣PA1A2A3)=1﹣

因此,玩三輪游戲至少有一輪出現(xiàn)音樂的概率是

(2)X可能的取值為10,20,100,﹣200.根據(jù)題意,有

PX=10)1×(12,

PX=20)2×(11,

PX=100)3×(10,

PX=﹣200)0×(13

X的分布列為:

X

10

20

100

﹣200

P

E(ξ)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某幾何體中,四邊形是邊長為的正方形, 是直角梯形, 是直角, , 是以為直角頂點(diǎn)的等腰直角三角形, .

(1)求證:平面平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x2+ax-a),其中a是常數(shù).

(1)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)若存在實(shí)數(shù)k,使得關(guān)于x的方程f(x)=k在[0,+∞)上有兩個不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

1求直線的普通方程及曲線的直角坐標(biāo)方程;

2設(shè)曲線軸的兩個交點(diǎn)分別為,與軸正半軸的交點(diǎn)為,求直線分成的兩部分的面積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】作出下列函數(shù)的圖像:

1

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的定義域和值域,并寫出其單調(diào)區(qū)間.

1;

2;

3;

4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個偶數(shù)2,4,6;再染6后面最鄰近的5個連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個連續(xù)奇數(shù)29,31,,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,,則在這個紅色子數(shù)列中,由1開始的第1000個數(shù)是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時隨機(jī)選擇手心或手背其中一種手勢,規(guī)定相同手勢人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求證:;

(Ⅱ)若恒成立,求的最大值與的最小值.

查看答案和解析>>

同步練習(xí)冊答案