3.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{2}$,3)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為( 。
A.($\frac{5}{2}$,$\frac{10}{3}$)B.($\frac{10}{3}$,+∞)C.[$\frac{10}{3}$,+∞)D.[2,+∞)

分析 求出函數(shù)f(x)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a≥x+$\frac{1}{x}$在($\frac{1}{2}$,3)恒成立,令g(x)=x+$\frac{1}{x}$,x∈($\frac{1}{2}$,3),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:∵函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1,
∴f′(x)=x2-ax+1,
若函數(shù)f(x)在區(qū)間($\frac{1}{2}$,3)上遞減,
故x2-ax+1≤0在($\frac{1}{2}$,3)恒成立,
即a≥x+$\frac{1}{x}$在($\frac{1}{2}$,3)恒成立,
令g(x)=x+$\frac{1}{x}$,x∈($\frac{1}{2}$,3),
g′(x)=$\frac{(x+1)(x-1)}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,
∴g(x)在($\frac{1}{2}$,1)遞減,在(1,3)遞增,
而g($\frac{1}{2}$)=$\frac{3}{2}$,g(3)=$\frac{10}{3}$,
故a≥$\frac{10}{3}$
故選:C.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查恒成立問(wèn)題的求解方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.連結(jié)正十二面體各面中心得到一個(gè)( 。
A.正六面體B.正八面體C.正十二面體D.正二十面體

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.樹(shù)德中學(xué)高一數(shù)學(xué)興趣班某同學(xué)探究發(fā)現(xiàn):△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c;在△ABC中有以下結(jié)論:
①若ab>c2;則0<C<$\frac{π}{3}$;
②若a+b>2c;則0<C<$\frac{π}{3}$;
③若a,b,c成等比數(shù)列(即b2=ac),則0<B≤$\frac{π}{3}$;
④若a2,b2,c2成等比數(shù)列,亦有0<B≤$\frac{π}{3}$;
他留下了下面兩個(gè)問(wèn)題,請(qǐng)你完成:
(I)若a,b,c成等差數(shù)列,證明:sin A+sin C=2sin(A+C);
(II)若a2,b2,c2成等差數(shù)列,求B的取值范圍.
(參考公式:(1)x,y∈R,x2+y2≥2xy;(2)x,y∈R+,x+y≥2$\sqrt{xy}$;當(dāng)且僅當(dāng)x=y時(shí)取等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=log2x在點(diǎn)A(1,2)處切線(xiàn)的斜率為  $\frac{1}{ln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知不等式|x2-3x-4|<2x+2的解集為{x|a<x<b}.
(1)求a、b的值;
(2)若m,n∈(-1,1),且mn=$\frac{a}$,S=$\frac{a}{{m}^{2}-1}$+$\frac{3({n}^{2}-1)}$,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知集合A={x|-1<x<3},集合B={x|x2-ax+b<0,a,b∈R}.
(Ⅰ)若A=B,求a,b的值;
(Ⅱ)若b=3,且(A∩B)?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn=2n-1+k,則f(x)=x3-kx2-2x+1的極大值為( 。
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖為一個(gè)求20個(gè)數(shù)的平均數(shù)的算法語(yǔ)句,在橫線(xiàn)上應(yīng)填充的是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.下列命題正確的有①⑤.(填序號(hào))
①若直線(xiàn)與平面有兩個(gè)公共點(diǎn),則直線(xiàn)在平面內(nèi);
②若直線(xiàn)l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
③若直線(xiàn)l與平面α相交,則l與平面α內(nèi)的任意直線(xiàn)都是異面直線(xiàn);
④如果兩條異面直線(xiàn)中的一條與一個(gè)平面平行,則另一條直線(xiàn)一定與該平面相交;
⑤若直線(xiàn)l與平面α平行,則l與平面α內(nèi)的直線(xiàn)平行或異面.

查看答案和解析>>

同步練習(xí)冊(cè)答案