12.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β為非零實數(shù)),f(2015)=5,則f(2016)=( 。
A.1B.3C.5D.不能確定

分析 由條件利用誘導(dǎo)公式求得 asinα+bcosβ=-1,再利用誘導(dǎo)公式化簡要求的式子為 asinα+bcosβ+4,從而得出結(jié)論

解答 解:∵f(x)=asin(πx+α)+bcos(πx+β)+4 (a,b,α,β為非零實數(shù)),f(2015)=5,
∴asin(2015π+α)+bcos(2015π+β)+4=-asinα-bcosβ+4=5,∴asinα+bcosβ=-1,
則f(2016)=asin(2016π+α)+bcos(2016π+β)+4=asinα+bcosβ+4=-1+4=3,
故選:B.

點評 本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,求出 asinα+bcosβ=-1,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2sinxcos(x-$\frac{π}{3}$),x∈[0,$\frac{3π}{4}$]的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=xex-asinxcosx(a∈R,其中e是自然對數(shù)的底數(shù)).
(1)當(dāng)a=0時,求f(x)的極值;
(2)若對于任意的x∈[0,$\frac{π}{2}}$],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間$({0,\frac{π}{2}})$上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x2-3x+3)ex,其中e是自然對數(shù)的底數(shù).
(1)若x∈[-2,a],-2<a<1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)a>-2,求證:f(a)>$\frac{13}{e^2}$;
(3)設(shè)h(x)=f(x)+(x-2)ex,x∈(1,+∞),是否存區(qū)間[m,n]⊆(1,+∞),使得x∈[m,n]時,y=h(x)的值域也是[m,n]?若存在,請求出一個這樣的區(qū)間; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若曲線f(x)=x4-2x在點P處的切線垂直于直線x+2y+1=0,則點P的坐標(biāo)為(1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列命題正確的序號是①②③
①命題“若a>b,則2a>2b”的否命題是真命題;
②命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是真命題;
③若p是q的充分不必要條件,則¬p是¬q的必要不充分條件;
④方程ax2+x+a=0有唯一解的充要條件是a=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.與不等式(x+3)(x-5)<0的解集相同的是( 。
A.$\left\{\begin{array}{l}x+3>0\\ x-5<0\end{array}\right.$B.$\left\{\begin{array}{l}x+3<0\\ x-5>0\end{array}\right.$C.$\left\{\begin{array}{l}x-5>0\\ x+3<0\end{array}\right.$D.$\left\{\begin{array}{l}x+3>0\\ x-5>0\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)原命題為:“若空間兩個向量$\vec a$與$\vec b$($\vec b$≠$\vec 0$)共線,則存在實數(shù)λ,使得$\vec a$=λ$\vec b$”,則其逆命題、否命題、逆否命題為真的個數(shù)( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.化簡:$\frac{{C_m^m+2C_{m+1}^m+3C_{m+2}^m+…+nC_{m+n-1}^m}}{{C_{m+n}^{m+1}}}$=$\frac{(m+1)n+1}{m+2}$(用m、n表示).

查看答案和解析>>

同步練習(xí)冊答案