已知等差數(shù)列{an}的前n項和為Sn,若(a2-1)3+2 012·(a2-1)=1,(a2 011-1)3+2 012(a2 011-1)=-1,則下列四個命題中真命題的序號為________.
①S2 011=2 011;②S2 012=2 012;③a2 011<a2;④S2 011<S2.
②③
【解析】該題通過條件(a2-1)3+2 012(a2-1)=1,(a2 011-1)3+2 012(a2 011-1)=-1,考查函數(shù)與方程的思想,由于函數(shù)f(x)=x3+x是奇函數(shù),由條件有f(a2-1)=1,f(a2 011-1)=-1.另外,f′(x)=3x2+1>0,所以,f(x)是單調(diào)遞增的,而f(1)=2>1=f(a2-1),∴a2-1<1,a2<2,所以,a2-1=-(a2 011-1),∴a2+a2 011=2,且a2-1>a2 011-1,∴a2>0>a2 011;又由等差數(shù)列{an}考查等差數(shù)列概念與通項公式,由此可得S2 012=×2 012=2 012,d<0,∴S2 011=S2 012-a2 012=2 012-(2-a2+d)=2 010+a1>a1+a2=S2.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第8天練習(xí)卷(解析版) 題型:填空題
如圖,在多面體ABCDEF中,已知ABCD是邊長為1的正方形,且△ADE、△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第5天練習(xí)卷(解析版) 題型:填空題
當直線l:y=k(x-1)+2被圓C:(x-2)2+(y-1)2=5截得的弦最短時,k的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第3天練習(xí)卷(解析版) 題型:解答題
解不等式|2x-4|<4-|x|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第2天練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}滿足:a1=,an+1= (n∈N*).
(1)求a2,a3的值;
(2)證明:不等式0<an<an+1對于任意n∈N*都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第10天練習(xí)卷(解析版) 題型:填空題
已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A⊆C⊆B的集合C的個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第10天練習(xí)卷(解析版) 題型:填空題
設(shè)a,b都是非零實數(shù),y=++可能取的值組成的集合是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第四章第4課時練習(xí)卷(解析版) 題型:解答題
已知復(fù)數(shù)z=+(m2-5m-6)i(m∈R),試求實數(shù)m分別取什么值時,z分別為:
(1)實數(shù);
(2)虛數(shù);
(3)純虛數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第四章第2課時練習(xí)卷(解析版) 題型:填空題
已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數(shù)λ=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com