函數(shù)y=x2+bx+c在區(qū)間[0,+∞)上具有單調(diào)性,則實數(shù)b應(yīng)滿足的條件是( 。
A、b≥0B、b≤0
C、b>0D、b<0
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)f(x)=x2+bx+c的圖象與性質(zhì),結(jié)合題意,求出b的取值范圍.
解答: 解:∵二次函數(shù)y=f(x)=x2+bx+c的圖象是拋物線,且開口向上,
對稱軸為x=-
b
2
,
在對稱軸的兩側(cè),函數(shù)f(x)具有單調(diào)性;
∴當(dāng)f(x)在區(qū)間[0,+∞)上具有單調(diào)性時,應(yīng)滿足-
b
2
≤0,即b≥0.
故選:A.
點評:本題考查了二次函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知凼數(shù)f(x)=x3-x.
(1)求曲線y=f(x)過點(1,0)的切線方程;
(2)若過x軸上的點(a,0)可以作曲線y=f(x)三條切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,已知AB=AC=AA1=2,
∠BAC=90°,若D為BC的中點,則AB1與C1D所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=sin(2x+
π
3
)在[-
π
2
,
π
4
]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=logax(a>1)的定義域和值域均為[m,n],則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在⊙O中,AB與CD是夾角為60°的兩條直徑,E、F分別是⊙O與直徑CD上的動點,若
OE
BF
OA
OC
=0,則λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sin2x+2sin2x-2,(0°<x<90°),當(dāng)f(x)取最大值時的x=( 。
A、15°B、22.5°
C、37.5°D、67.5°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+cosx)
(1)求f(
π
4
)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=(4-x)0+
16-x2
|x-2|-5
-x3的定義域.

查看答案和解析>>

同步練習(xí)冊答案