【題目】如圖,在四棱錐中,為等邊三角形,邊長為2,為等腰直角三角形,,,,平面平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點E,使得平面PBC?若存在,求出的值;若不存在,請說明理由.
【答案】(1)證明見解析;(2);(3)棱PD上存在一點E,使得平面PBC,且.
【解析】
(1)用面面垂直的性質(zhì)定理證明線面垂直;
(2)取的中點,連接,得平面,以為軸,為軸,過平行于的直線為軸,建立如圖所示的空間直角坐標系,用平面的法向量的夾角求二面角;
(3)假設棱PD上存在一點E,使得平面PBC,設,由與平面的法向量垂直求得,如果求不出,說明不存在.
(1)∵平面平面ABCD,,平面平面ABCD,平面ABCD,∴平面;
(2)取的中點,連接,由于是等邊三角形,所以,由平面平面ABCD,得平面,,
以為軸,為軸,過平行于的直線為軸,建立如圖所示的空間直角坐標系,
則,,,,,
,,設平面的一個法向量為,
則,取,則,,,
平面的一個法向量為,
,
∴平面PAD與平面PBC所成銳二面角的余弦值為;
(3)假設棱PD上存在一點E,使得平面PBC,設,
由(2),,
,又平面的一個法向量是,
∴,解得,∴.
∴棱PD上存在一點E,使得平面PBC,且.
科目:高中數(shù)學 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調(diào)查統(tǒng)計.這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計 | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計 | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從拋物線上任意一點P向x軸作垂線段,垂足為Q,點M是線段上的一點,且滿足
(1)求點M的軌跡C的方程;
(2)設直線與軌跡c交于兩點,T為C上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右頂點為,上頂點為.已知橢圓的離心率為,.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線:與橢圓交于,兩點,且點在第二象限.與延長線交于點,若的面積是面積的3倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線的焦點為F且斜率為k的直線l交曲線C于、兩點,交圓于M,N兩點(A,M兩點相鄰).
(1)求證:為定值;
(2)過A,B兩點分別作曲線C的切線,,兩切線交于點P,求與面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點.
(1)求證:平面;
(2)求直線和平面所成角的正切值;
(3)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com