【題目】過拋物線的焦點為F且斜率為k的直線l交曲線C于、兩點,交圓于M,N兩點(A,M兩點相鄰).
(1)求證:為定值;
(2)過A,B兩點分別作曲線C的切線,,兩切線交于點P,求與面積之積的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經營和國內市場主要商品供求狀況與變化趨勢的一套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結論中不正確的是( )
A. 2018年1月至4月的倉儲指數(shù)比2017年同期波動性更大
B. 2017年、2018年的最大倉儲指數(shù)都出現(xiàn)在4月份
C. 2018年全年倉儲指數(shù)平均值明顯低于2017年
D. 2018年各月倉儲指數(shù)的中位數(shù)與2017年各月倉儲指數(shù)中位數(shù)差異明顯
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,邊長為2,為等腰直角三角形,,,,平面平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點E,使得平面PBC?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(為自然對數(shù)的底)。
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若存在均屬于區(qū)間的,,且,使,證明:;
(Ⅲ)對于函數(shù)與定義域內的任意實數(shù),若存在常數(shù),,使得和都成立,則稱直線為函數(shù)與的分界線。試探究當時,函數(shù)與是否存在“分界線”?若存在,請給予證明,并求出,的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】西湖小學為了豐富學生的課余生活開設課后少年宮活動,其中面向二年級的學生共開設了三門課外活動課:七巧板、健美操、剪紙.203班有包括奔奔、果果在內的5位同學報名參加了少年宮活動,每位同學只能挑選一門課外活動課,已知每門課都有人選,則奔奔和果果選擇了同一個課外活動課的選課方法種數(shù)為( )
A.18B.36C.72D.144
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(a為常數(shù))的最大值為0.
(1)求實數(shù)a的值;
(2)設函數(shù),當時,求證:函數(shù)有兩個不同的零點,(),且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。
(1)求曲線的方程;
(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年電商“雙十一”大戰(zhàn)即將開始.某電商為了盡快占領市場,搶占今年“雙十一”的先機,對成都地區(qū)年齡在15到75歲的人群“是否網(wǎng)上購物”的情況進行了調查,隨機抽取了100人,其年齡頻率分布表和使用網(wǎng)上購物的人數(shù)如下所示:(年齡單位:歲)
年齡段 | ||||||
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
購物人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認為“網(wǎng)上購物”與年齡有關?
年齡低于45歲 | 年齡不低于45歲 | 總計 | |
使用網(wǎng)上購物 | |||
不使用網(wǎng)上購物 | |||
總計 |
(2)若從年齡在,的樣本中各隨機選取2人進行座談,記選中的4人中“使用網(wǎng)上購物”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù),a∈R),以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ
(1)求直線l的普通方程及曲線C的直角坐標方程;
(2)若直線l過點P(1,1)且與曲線C交于AB兩點,求|PA|+|PB|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com