已知數(shù)列{an}是首項為15、公差為整數(shù)的等差數(shù)列,前n項的和是Sn,S11≥0,S12<0,Sn的最大值是S,函數(shù)y=f(x)滿足f(1+x)=f(5-x)對任意實(shí)數(shù)x都成立,且y=f(x) 的所有零點(diǎn)和恰好為S,則y=f(x)的零點(diǎn)的個數(shù)為 .
【答案】
分析:根據(jù)已知結(jié)合等差數(shù)列的性質(zhì),求出數(shù)列的公差d,進(jìn)而求出數(shù)列的前n項的是S
n的最大值是S,由函數(shù)y=f(x)滿足f(1+x)=f(5-x)對任意實(shí)數(shù)x都成立,分析也函數(shù)圖象關(guān)于直線x=3對稱,即函數(shù)y=f(x)所有零點(diǎn)的平均數(shù)為3,進(jìn)而求出函數(shù)零點(diǎn)的個數(shù).
解答:解:設(shè)數(shù)列{a
n}的公差為d,則d∈Z
∵S
11=11•a
6≥0,
∴a
6=a
1+5d=15+5d≥0,
解得d≥-3…①
又∵S
12=
•12=
•12=180+66d<0,
解得d<
…②
由①②得d=-3
則S
n=
n
2+
n
則當(dāng)n=5或n=6時,S
n的最大值是S=45
∵函數(shù)y=f(x)滿足f(1+x)=f(5-x)對任意實(shí)數(shù)x都成立
∴函數(shù)y=f(x)的圖象關(guān)于直線x=3對稱
即函數(shù)y=f(x)所有零點(diǎn)的平均數(shù)為3
又∵y=f(x) 的所有零點(diǎn)和恰好為S=45
∴y=f(x)的零點(diǎn)共有
=15個
故答案為:15
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)零點(diǎn),函數(shù)的對稱性,等差數(shù)列的性質(zhì),等差數(shù)列的前n項和,是數(shù)列與函數(shù)的綜合應(yīng)用,難度中檔.