13.已知橢圓的方程為:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,若C為橢圓上一點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的左,右焦點(diǎn),并且|CF1|=2,則|CF2|=8.

分析 求得橢圓的a=5,由橢圓的定義可得,|CF1|+|CF2|=2a=10,計(jì)算即可得到所求距離.

解答 解:橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的a=5,
由橢圓的定義可得,|CF1|+|CF2|=2a=10,
由|CF1|=2,可得|CF2|=10-2=8.
故答案為:8.

點(diǎn)評(píng) 本題考查橢圓的定義、方程和性質(zhì),主要是橢圓的定義,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,點(diǎn)B在橢圓C上運(yùn)動(dòng)時(shí),AB⊥x軸時(shí),|AB|取得最大值4.
(1)求a的取值范圍;
(2)若弦AB經(jīng)過點(diǎn)F1時(shí),△ABF2是等腰三角形,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如表是在一次射擊訓(xùn)練中,一名射擊運(yùn)動(dòng)員20次的射擊成績(jī)表:
環(huán)數(shù)78910
頻數(shù)63
由于記錄本破損,9環(huán)和10環(huán)的頻數(shù)缺失了,但在統(tǒng)計(jì)記錄中發(fā)現(xiàn)該運(yùn)動(dòng)員的平均成績(jī)?yōu)?.5環(huán).(參考數(shù)據(jù)$\sqrt{15}$≈3.87,精確到0.01)
(1)求10環(huán)的頻數(shù);
(2)求該運(yùn)動(dòng)員射擊成績(jī)的標(biāo)準(zhǔn)差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè){an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a3+a4-a1-a2=5,則a5+a6的最小值是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.化簡(jiǎn):$\frac{sin(α-5π)}{tan(3π-α)}$•$\frac{cot(\frac{π}{2}-α)}{tan(α-\frac{3}{2}π)}$•$\frac{cos(8π-α)}{sin(-α-4π)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在橢圓$\frac{{x}^{2}}{3}$+y2=1中,有一沿直線運(yùn)動(dòng)的粒子從一個(gè)焦點(diǎn)F2出發(fā)經(jīng)橢圓反射后經(jīng)過另一個(gè)焦點(diǎn)F1,再次被橢圓反射后又回到F2,則該粒子在整個(gè)運(yùn)動(dòng)過程中經(jīng)過的距離為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若扇形的半徑為10cm,圓心角為60°,則該扇形的弧長(zhǎng)l=$\frac{10π}{3}$cm,扇形面積S=$\frac{50π}{3}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanα=$\frac{1}{2}$,tanβ=-2,求$\frac{sin(α+β)}{cos(α+β)-cos(α-β)}$+tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.雙曲線$\left\{\begin{array}{l}{x=2\sqrt{3}tanθ}\\{y=3\sqrt{2}secθ}\end{array}\right.$的焦點(diǎn)坐標(biāo)是(0,±$\sqrt{30}$),漸近線方程是y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案