已知函數(shù)).
(1)求的單調(diào)區(qū)間;
⑵如果是曲線上的任意一點(diǎn),若以為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
⑶討論關(guān)于的方程的實(shí)根情況.

(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2);(3)見(jiàn)解析.

解析試題分析:(1)先由對(duì)數(shù)函數(shù)的定義求出函數(shù)的定義域,然后求出函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求解;(2)先寫出切點(diǎn)處的切線的斜率,然后根據(jù)已知條件得到,則有,結(jié)合二次函數(shù)在區(qū)間上的圖像與性質(zhì),可得的最小值;(3)根據(jù)已知條件構(gòu)造函數(shù),將方程的實(shí)根的情況轉(zhuǎn)化為函數(shù)的零點(diǎn)問(wèn)題.由函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系可知,在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,即最大值是,分三種情況進(jìn)行討論:當(dāng),函數(shù)的圖象與軸恰有兩個(gè)交點(diǎn);當(dāng)時(shí),函數(shù)的圖象與軸恰有一個(gè)交點(diǎn);當(dāng)時(shí),函數(shù)的圖象與軸無(wú)交點(diǎn).由方程的根與函數(shù)零點(diǎn)的關(guān)系得解.
試題解析:(1),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/13/7/19reh4.png" style="vertical-align:middle;" />,
,
,
得,;由得,.
∴函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.                 2分
(2)由題意,以為切點(diǎn)的切線的斜率滿足:
,
所以對(duì)恒成立.
又當(dāng)時(shí),,
所以的最小值為.                                7分.
(3)由題意,方程化簡(jiǎn)得:
.
,則
當(dāng)時(shí),;當(dāng)時(shí),.
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
所以處取得極大值即最大值,最大值為
所以當(dāng),即時(shí),的圖象與軸恰有兩個(gè)交點(diǎn),
方程有兩個(gè)實(shí)根;
當(dāng)時(shí),的圖象與軸恰有一個(gè)交點(diǎn),
方程有一個(gè)實(shí)根;
當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若點(diǎn)是動(dòng)點(diǎn)的軌跡上的一點(diǎn),軸上的一動(dòng)點(diǎn),試討論直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若,試確定函數(shù)的單調(diào)區(qū)間;
(2)若且對(duì)任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(1)求a、b的值;
(2)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè),若對(duì)任意,有,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),令,(),()為曲線上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且實(shí)數(shù)滿足,問(wèn):函數(shù)處的切線能否平行于軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若處的切線與直線平行,求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若函數(shù)滿足:在定義域內(nèi)存在實(shí)數(shù),使(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”.
(Ⅰ)函數(shù)是否關(guān)于1可線性分解?請(qǐng)說(shuō)明理由;
(Ⅱ)已知函數(shù)關(guān)于可線性分解,求的取值范圍;
(Ⅲ)證明不等式:

查看答案和解析>>

同步練習(xí)冊(cè)答案